Network Theory

* Graph metrics for undirected binary graphs
- degree, hubs, centrality
> communities

- scale-free and small-world graphs
* Directed and weighted graphs

* Application to synthetic and real datasets

> Python library: networkx
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* Atrticles and reviews:
- Krendl et al. (2022) SCAN: networks in social and cognitive neuroscience
— Douw et al. (2023) Netw Neurosci: clinical perspectives

- van den Heuvel and Sporns (2011) J Neurosci: rich-club in structural
connectome

* To go further for application to fMRI dynamics:

- Gilson et al. (2020) Neuroimage: model-based analysis of whole-brain
dynamics based on fMRI data
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Network Analysis of Functional MRI
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* Links reflect correlations of fMRI signals
* How to interpret network measures?

Lrendl et al. (2022) SCAN



Class 2: Network Theory

* Graph metrics for undirected binary graphs
- degree, hubs, centrality
> communities

- scale-free and small-world graphs
* Directed and weighted graphs

* Application to synthetic and real datasets

> Python library: networkx



What is a Network/Graph?
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* Nodes

 Edges




What is a Network/Graph?
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How important is a node?

* Degree of a node: number of connections

- anode with high degree is called a ‘hub’

degree =2
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How important is a node?

* Degree of a node: number of connections

— anode with high degree is called a ‘hub’

e Shortest path: for a given pair of nodes, the shortest path is the minimum number of links
between them (if they are directly or indirectly connected)

- the distribution of shortest paths shows how “easy” it is to “travel” in the network

shortest path length = 1
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How important is a node?

« Centrality: one concept, many flavors
- degree centrality for a node is the fraction of neighbors (w.r.t. all remaining nodes)

- betweenness centrality of a node is the sum of the fraction of all-pairs’ shortest paths that
pass through

— eigenvector centrality comes from the spectral analysis of the adjacency matrix

highly highly
connected central

e




How important is a node?

« Centrality: one concept, many flavors
- degree centrality for a node is the fraction of neighbors (w.r.t. all remaining nodes)

- betweenness centrality of a node is the sum of the fraction of all-pairs’ shortest paths that
pass through

— eigenvector centrality comes from the spectral analysis of the adjacency matrix
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Mathematical Formulation based on Adjacency Matrix

» Adjacency matrix: Aij

e Degree: di:Z,AU so in matrix form: d=Ae with e=(1,..,1)
1
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Mathematical Formulation based on Adjacency Matrix

» Adjacency matrix: Aij

e Degree: di:Z,AU so in matrix form: d=Ae with e=(1,..,1)
1

* Number of paths from j to i of length / (AI)U. (AZ)U: Zk A, Akj



Mathematical Formulation based on Adjacency Matrix

Adjacency matrix: Aij

Degree: dl:z A, soinmatrix form: d=Ae with e=(1,..,1)
1
L I
Number of paths from j to i of length / (A )U
Dominating eigenvector and eigenvalue: Av=Av

> A with largest real part among all eigenvalues

> eigenvector centrality |V1-|



Class 2: Network Theory

* Graph metrics for undirected binary graphs
- degree, hubs, centrality
> communities

- scale-free and small-world graphs
* Directed and weighted graphs

* Application to synthetic and real datasets

> Python library: networkx



Communities

 Groups of nodes that are densely connected
« Detection using metrics that quantify within-group density compared to outside

 How likely are two nodes to be connected?




Communities

* Groups of nodes that are densely connected

« Detection using metrics that quantify within-group density compared to outside

 How likely are two nodes to be connected?
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Communities

* Groups of nodes that are densely connected
« Detection using metrics that quantify within-group density compared to outside

 How likely are two nodes to be connected?
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Greedy Algorithm based on Modularity

d.d,
 Modularity to assess quality of community grouping (Ci, Co, ...) Q—Z,- jec Aij_ Z ij
K Sk

- Start with singletons of nodes  {i},{j},...

d.d,
»  Check nodes that are “strongly connected” AQ=A;— Z (;
Kk k

* lterative process to merge subgroups {i}, {j}é{i, ]}

* Repeat solong as Q increases
- list of communities:  {0,2,5,...},{1,3,4,...},...

Girvan & Newman (2002) PNAS, Newman (2006) Phys Rev E

connection probability
“by chance”



Class 2: Network Theory

* Graph metrics for undirected binary graphs
- degree, hubs, centrality
> communities

- scale-free and small-world graphs
* Directed and weighted graphs

* Application to synthetic and real datasets

> Python library: networkx



Synthetic Models for Real Data

« Connectivity in real data? Example of structural connectome

« Distribution of degree across cortical regions?

region index
region count
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Scale-Free Networks

Construction with preferential to given nodes (hubs)




Scale-Free Networks

e Construction with preferential to given nodes (hubs)
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Scale-Free Networks

e Construction with preferential to given nodes (hubs)
e Core: subgraph with high degree hubs (here in red)

* Rich club: hubs that are connected together




Small-World Networks

* Ring lattice with rewiring
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Small-World Networks

* Ring lattice with rewiring
* Rewired links are shortcuts to travel the graph

* No single important node, but distributed architecture with “easy traveling”




Small-World Networks

* Ring lattice with rewiring
 Rewired links are shortcuts to travel the graph

No single important node, but distributed architecture with “easy traveling”
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Class 2: Network Theory

* Graph metrics for undirected binary graphs
- degree, hubs, centrality
> communities

- scale-free and small-world graphs
* Directed and weighted graphs

* Application to synthetic and real datasets

> Python library: networkx



Directed and weighted graphs

* Node degree replaced by node strength Zj Aj

* Some concepts and graph metrics can be easily transposed, others can't...
- yes: hubs, community detection based on modularity, ...

— no: shortest path (is the weight of a link a cost or an efficacy...?)



Network Analysis for MRI Data
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* How to interpret network measures?
e Structural connectivity (SC): anatomical white-matter fibers (e.g. density)
* Functional connectivity (FC): correlations of fMRI signals reflecting neuronal activity



Community Detection based on Structural versus Functional Data?

tractography (anatomy)
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Community Detection based on Structural versus Functional Data?

tractography (anatomy) regional act|V|ty
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Community Detection based on Structural versus Functional Data?

Check notebook to compare
hubs / communities obtained
from structural versus functional
connectomes

example SC example FC
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Binarization of Matrices?

tractography (anatomy)
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Binarization of Matrices?

region index

tractography (anatomy)
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Class 2: Network Theory

* Graph metrics for undirected binary graphs
- degree, hubs, centrality
> communities

- scale-free and small-world graphs
* Directed and weighted graphs

* Application to synthetic and real datasets

> Python library: networkx



Practice

* Basic exercises in basic_network_analysis

> undirected binary graphs

- also first steps toward directed / weighted graphs
* Try real data: ana_SC_FC.ipynb

> ex_SC_HCP.npy, ex_SC.npy, ex FC.npy

- identify hubs, core, communities
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