
  

Network Theory

● Graph metrics for undirected binary graphs
➢ degree, hubs, centrality
➢ communities
➢ scale-free and small-world graphs

● Directed and weighted graphs

● Application to synthetic and real datasets
➢ Python library: networkx



References

● Articles and reviews:
– Krendl et al. (2022) SCAN: networks in social and cognitive neuroscience
– Douw et al. (2023) Netw Neurosci: clinical perspectives
– van den Heuvel and Sporns (2011) J Neurosci: rich-club in structural 

connectome

● To go further for application to fMRI dynamics:
– Gilson et al. (2020) Neuroimage: model-based analysis of whole-brain 

dynamics based on fMRI data



Rich-Club in Structural Connectome (White-Matter Fibers)

Hagman et al. (2008) PLoS Biol; van den Heuvel et al. (2011) J Neurosci



Network Analysis of Functional MRI

Lrendl et al. (2022) SCAN

● Links reflect correlations of fMRI signals
● How to interpret network measures?
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Mathematical Formulation based on Adjacency Matrix

● Adjacency matrix:

● Degree:                              so in matrix form:                             with 

● Number of paths from j to i of length l

● Dominating eigenvector and eigenvalue:

➢      with largest real part among all eigenvalues

➢ eigenvector centrality

d i=∑ j
A ij

(A l)ij

d=A e e=(1 , ... ,1)T

Aij

A v=λ v
λ

|v i|
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Greedy Algorithm based on Modularity

● Modularity to assess quality of community grouping (C1, C2, ...)

● Start with singletons of nodes

● Check nodes that are “strongly connected”

● Iterative process to merge subgroups

● Repeat so long as Q increases

– list of communities: 

{i}, { j},…

Q=∑i , j∈C l
Aij−

d id j
∑k

dk
connection probability 

“by chance”{i}, { j},…

{i}, { j}→{i , j}

{0 ,2 ,5 ,…}, {1 ,3 ,4 ,…},…

Girvan & Newman (2002) PNAS, Newman (2006) Phys Rev E

ΔQ=Aij−
did j
∑k

d k
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Synthetic Models for Real Data

● Connectivity in real data? Example of structural connectome

● Distribution of degree across cortical regions?
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Scale-Free Networks

● Construction with preferential to given nodes (hubs)

● Core: subgraph with high degree hubs (here in red)

● Rich club: hubs that are connected together
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● Node degree replaced by node strength

● Some concepts and graph metrics can be easily transposed, others can’t…
– yes: hubs, community detection based on modularity, ...
– no: shortest path (is the weight of a link a cost or an efficacy…?)

Directed and weighted graphs

∑ j
A ij



Network Analysis for MRI Data

● How to interpret network measures?
● Structural connectivity (SC): anatomical white-matter fibers (e.g. density)
● Functional connectivity (FC): correlations of fMRI signals reflecting neuronal activity



 

Community Detection based on Structural versus Functional Data?
tractography (anatomy) regional activity
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tractography (anatomy) regional activity

Community Detection based on Structural versus Functional Data?

Check notebook to compare 
hubs / communities obtained 

from structural versus functional 
connectomes
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Binarization of Matrices?

histogram of normalized weights



 

tractography (anatomy)

Binarization of Matrices?

histogram of normalized weights

threshold?
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Practice

● Basic exercises in basic_network_analysis
➢ undirected binary graphs
➢ also first steps toward directed / weighted graphs

● Try real data: ana_SC_FC.ipynb
➢ ex_SC_HCP.npy, ex_SC.npy, ex_FC.npy
➢ identify hubs, core, communities
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