
  

Supervised Learning

● Basics
➢ Cross-validation
➢ Classifiers: example of logistic regression
➢ Hyperparameter tuning with nested cross-validation
➢ Feature selection (RFE)

● Application to synthetic and real datasets: library scikit-learn



References

● Articles and reviews:
– Bishop (2006) Machine learning and Pattern Recognition; 

https://www.cs.uoi.gr/~arly/courses/ml/tmp/Bishop_book.pdf
– scikit-learn documentation: https://scikit-learn.org/

● To go further on model-based classification:
– Gilson et al. (2020) Neuroimage: model-based analysis of whole-brain 

dynamics based on fMRI data

https://www.cs.uoi.gr/~arly/courses/ml/tmp/Bishop_book.pdf
https://scikit-learn.org/
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Randomizing Labels: Baseline = Chance Level

shuffling 
training 
labels

test 
accuracy



 

Train, Test and Baseline Accuracy

● distributions of 
accuracies, 
not just mean 
accuracy

● control for 
overfitting

● “effect size” of 
classification



  

Class 3: Supervised Learning

● Basics
➢ Cross-validation
➢ Classifiers: example of logistic regression
➢ Hyperparameter tuning with nested cross-validation
➢ Feature selection (RFE)

● Application to synthetic and real datasets: library scikit-learn



y=ϕ(∑i
w i x i)

xi

sigmoid 
function

wi
output

input

Logistic Regression (a.k.a. Nonlinear Perceptron)



y=ϕ(∑i
w i x i)>θ

xi

sigmoid 
function

wi
output

input

Logistic Regression (a.k.a. Nonlinear Perceptron)

red class



y=ϕ(∑i
w i x i)<θ

xi

sigmoid 
function

wi
output

input

Logistic Regression (a.k.a. Nonlinear Perceptron)

blue class



y=ϕ(∑i
w i x i)

x i

sigmoid 
function

wi

ȳ
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● gradient descent to optimize weights
● depends on loss function and activation function Φ
● weight update for each input (online) or in batch
● inertia on weight update (e.g. Adam optimizer)

Logistic Regression (a.k.a. Nonlinear Perceptron)

Δweff ← βΔweff+(1−β)Δw
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gradient descent:

Enforce Sparsity of Learned Weight Structure
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gradient descent:

Enforce Sparsity of Learned Weight Structure

y

xi wi
output

input
regularization

Δw i=( ȳ− y)ϕ ' (ϕ−1( y ))x i−
1
C
wi



Importance of Regularization

● smaller C implies more sparse
● opposing trends for train and test 

accuracies
● important to focus on some 

features in case of large input 
dimensionality
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Recursive Feature Elimination (RFE)

xi wi
output

input

● large weight (in abs value): important feature
● important: needs for rescaling inputs (z-score samples for each feature)
● step-wise removal of weak weights first to identify important features, 

provides a ranking of feature importance

y=ϕ(∑i
w i x i)
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Practice

● Basic exercise in nb_suplearn_exercise
➢ also further details on cross-validation (simple and nested), 

● Classification of subjects/tasks using data_fMRI
● Try also datasets in scikit-learn (https://scikit-learn.org/stable/datasets.html)
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