Supervised Learning

* Basics
> Cross-validation
- Classifiers: example of logistic regression
~ Hyperparameter tuning with nested cross-validation

- Feature selection (RFE)

* Application to synthetic and real datasets: library scikit-learn



References

* Atrticles and reviews:
- Bishop (2006) Machine learning and Pattern Recognition;

— scikit-learn documentation:

* To go further on model-based classification:

- Gilson et al. (2020) Neuroimage: model-based analysis of whole-brain
dynamics based on fMRI data


https://www.cs.uoi.gr/~arly/courses/ml/tmp/Bishop_book.pdf
https://scikit-learn.org/
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Cross-Validation
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Randomizing Labels: Baseline = Chance Level
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Train, Test and Baseline Accuracy
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Logistic Regression (a.k.a. Nonlinear Perceptron)
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Logistic Regression (a.k.a. Nonlinear Perceptron)
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Logistic Regression (a.k.a. Nonlinear Perceptron)
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Logistic Regression (a.k.a. Nonlinear Perceptron)
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Logistic Regression (a.k.a. Nonlinear Perceptron)

gradient descent to optimize weights

depends on loss function and activation function @

weight update for each input (online) or in batch

iInertia on weight update (e.g. Adam optimizer)

Aw" € BAWT+(1-B)AW
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Enforce Sparsity of Learned Weight Structure
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Enforce Sparsity of Learned Weight Structure
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Importance of Regularization
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e opposing trends for train and test
accuracies

* important to focus on some
features in case of large input
dimensionality



Nested Cross-Validation for Hyperparameter Tuning
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Nested Cross-Validation for Hyperparameter Tuning
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Recursive Feature Elimination (RFE)
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* large weight (in abs value): important feature
* important: needs for rescaling inputs (z-score samples for each feature)

* step-wise removal of weak weights first to identify important features,
provides a ranking of feature importance



Recursive Feature Elimination (RFE)
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Practice

* Basic exercise in nb_suplearn_exercise
- also further details on cross-validation (simple and nested),
» Classification of subjects/tasks using data_fMRI
* Try also datasets in scikit-learn (https://scikit-learn.org/stable/datasets.html)
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