Supervised Learning

* Basics
> Cross-validation
- Classifiers: example of logistic regression
~ Hyperparameter tuning with nested cross-validation

- Feature selection (RFE)

* Application to synthetic and real datasets: library scikit-learn

References

* Atrticles and reviews:
- Bishop (2006) Machine learning and Pattern Recognition;

— scikit-learn documentation:

* To go further on model-based classification:

- Gilson et al. (2020) Neuroimage: model-based analysis of whole-brain
dynamics based on fMRI data

https://www.cs.uoi.gr/~arly/courses/ml/tmp/Bishop_book.pdf
https://scikit-learn.org/

Supervised Learning

* Basics
~ Cross-validation
- Classifiers: example of logistic regression
~ Hyperparameter tuning with nested cross-validation

- Feature selection (RFE)

* Application to synthetic and real datasets: library scikit-learn

Cross-Validation

0 0
20 20
u
icj_ 40 40
2 whole
© dataset
© 60 60
5
80 80
100 100
0 25 50 labels

feature

Cross-Validation

trial samples

(\9]
o

N
o

(o)}
o

80

100

0

25
feature

50

test set (20%)

40
60 train set (80%)
80

100
labels

Cross-Validation

trial samples

20

40

60

80

100

0

25
feature

50

test set (20%)
20

40
60 train set (80%)
80

100
labels

/

~ test accuracy:
generalizability
to “new”
~ (unseen) data

Cross-Validation

trial samples

()]
o

N
o

()]
o

80

100

0

25
feature

50

20

40

60

80

100
labels

split 1

split 2

split 3

Cross-Validation

trial samples

()]
o

N
o

()]
o

80

100

0

25
feature

50

20

40

60

80

100

e

acCross

_ folds/splits

labels Reliability

\\

S

—

=

[=3
)

split 2

split 3

Randomizing Labels: Baseline = Chance Level

20

40

60

trial samples

80

100

20

40

60

80

100

25 50 labels
feature

test
accuracy

\\7

|

training

~ shuffling
labels

\\\ w

™

/

- \\

— ’//

Train, Test and Baseline Accuracy

accuracy

 distributions of
accuracies,
not just mean
accuracy

e control for
overfitting

e “effect size” of
classification

tré in te'st sh'uf

type

Class 3: Supervised Learning

* Basics
> Cross-validation
- Classifiers: example of logistic regression
~ Hyperparameter tuning with nested cross-validation

- Feature selection (RFE)

* Application to synthetic and real datasets: library scikit-learn

Logistic Regression (a.k.a. Nonlinear Perceptron)

input

sigmoid
function

] | [imiee] (W] (W[

Wi
>°";"¢<zlw1xl>

Logistic Regression (a.k.a. Nonlinear Perceptron)

input

sigmoid
function

] | [imiee] (W] (W[

w;
\\\\\\\\\\\\\\\\\\\\\\“outpUt
/ y:(i)(ziwixi)>6 : red class

Logistic Regression (a.k.a. Nonlinear Perceptron)

input

sigmoid
function

] | [imiee] (W] (W[

W,
\Output
/ y:(i)(ziwixi)<6 : blue class

Logistic Regression (a.k.a. Nonlinear Perceptron)

input

sigmoid
function

Wi
>°";"¢<zlw1xl>

] | [imiee] (W] (W[

target

y

Logistic Regression (a.k.a. Nonlinear Perceptron)

input

sigmoid error, loss, ...
function

] | [imiee] (W] (W[

Wi
>wypu¢(2, Wix;)

target

y

Logistic Regression (a.k.a. Nonlinear Perceptron)

input

weight

1

Wi
>°";"¢<zlw1xl>

sigmoid

function

] | [imiee] (W] (W[

target

y

O¢€

update Aw. oc———
ow.

l

error, loss, ...

Logistic Regression (a.k.a. Nonlinear Perceptron)

input

weight %,
update AWI-OC— e Y
oy ow,
L
B output
I
% y B (i) (Zl Wi Xi)
[]
[] sigmoid error, loss, ...
E / funCtion 4‘ . 2
e=|y—y|

target

y

Logistic Regression (a.k.a. Nonlinear Perceptron)

input

igh

‘L’:’:c'lgt; Aw.c(y—y)o'(u)x,
%% Vvi u::§:,uqxi
5 output o
O =¢ ' (y)
- y=0¢ (Zl Wixi)
E sigmoid error, loss, ...
E function B)

e=|y—y]|

target

Y

Logistic Regression (a.k.a. Nonlinear Perceptron)

gradient descent to optimize weights

depends on loss function and activation function @

weight update for each input (online) or in batch

iInertia on weight update (e.g. Adam optimizer)

Aw" € BAWT+(1-B)AW

Class 3: Supervised Learning

* Basics
> Cross-validation
- Classifiers: example of logistic regression
- Hyperparameter tuning with nested cross-validation

- Feature selection (RFE)

* Application to synthetic and real datasets: library scikit-learn

Enforce Sparsity of Learned Weight Structure

gradient descent: Awi:(y—y) 0) '(q)_1<y)) X,

input

output

CEEDEECEDE
=

Enforce Sparsity of Learned Weight Structure

1

gradient descent: Awi:(y—y)q)'(q)_l(y)>xi—Ewi

regularization
input

output

CEEDEECEDE
=

Importance of Regularization

daccuracy

train-test accuracy

),

Bl train
[test

0.01

0.1 1.0 10.0 100.0
reg hyperparam C

* smaller C implies more sparse

e opposing trends for train and test
accuracies

* important to focus on some
features in case of large input
dimensionality

Nested Cross-Validation for Hyperparameter Tuning

20 20
u
]
= 40 40
-
o
T 60 60
r
80 80
100 100
0 25 50 labels

feature

split 1

split 2

split 3

Nested Cross-Validation for Hyperparameter Tuning

0 0 -
20 20 =
u
]
= 40 40
-
S
T 60 60
r
80 80
100 100
0 25 50 labels

feature

split 1

Nested Cross-Validation for Hyperparameter Tuning

0 0
20 20
u
0]
= 40 40
-
S
T 60 60
frar
80 80
100 100
0 25 50 labels

feature

estimate best C
from training set
(best performance
on validation set)

split 1

]

split 1.1

split 1.2

split1.30

Class 3: Supervised Learning

* Basics
> Cross-validation
- Classifiers: example of logistic regression
~ Hyperparameter tuning with nested cross-validation

- Feature selection (RFE)

* Application to synthetic and real datasets: library scikit-learn

Recursive Feature Elimination (RFE)

input

K
y:(l)(ziwixi)

CEECOERCRCOE

* large weight (in abs value): important feature
* important: needs for rescaling inputs (z-score samples for each feature)

* step-wise removal of weak weights first to identify important features,
provides a ranking of feature importance

Recursive Feature Elimination (RFE)

input
X: m
I E Wi

E output
K y=0 (Zl W, X;)
[l
[| / ranking or informative reatures
H £ 40
. 35

NN W
o U O

=
(%]

mean ranking across CV splits

-]
o

0 10 20 30 40 50
input index

Practice

* Basic exercise in nb_suplearn_exercise
- also further details on cross-validation (simple and nested),
» Classification of subjects/tasks using data_fMRI
* Try also datasets in scikit-learn (https://scikit-learn.org/stable/datasets.html)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

