From 0d02df3745ca99a7b0e459acbef6d4ceb4e19f60 Mon Sep 17 00:00:00 2001 From: GILSON Matthieu <matthieu.gilson@univ-amu.fr> Date: Thu, 11 May 2023 12:52:53 +0000 Subject: [PATCH] Upload New File --- ...kitlearn_ica_blind_source_separation.ipynb | 97 +++++++++++++++++++ 1 file changed, 97 insertions(+) create mode 100644 nb_unsupervised_learning/scikitlearn_ica_blind_source_separation.ipynb diff --git a/nb_unsupervised_learning/scikitlearn_ica_blind_source_separation.ipynb b/nb_unsupervised_learning/scikitlearn_ica_blind_source_separation.ipynb new file mode 100644 index 0000000..ca16a4e --- /dev/null +++ b/nb_unsupervised_learning/scikitlearn_ica_blind_source_separation.ipynb @@ -0,0 +1,97 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Blind source separation using FastICA\n\nAn example of estimating sources from noisy data.\n\n`ICA` is used to estimate sources given noisy measurements.\nImagine 3 instruments playing simultaneously and 3 microphones\nrecording the mixed signals. ICA is used to recover the sources\nie. what is played by each instrument. Importantly, PCA fails\nat recovering our `instruments` since the related signals reflect\nnon-Gaussian processes.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate sample data\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\nfrom scipy import signal\n\nnp.random.seed(0)\nn_samples = 2000\ntime = np.linspace(0, 8, n_samples)\n\ns1 = np.sin(2 * time) # Signal 1 : sinusoidal signal\ns2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal\ns3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal\n\nS = np.c_[s1, s2, s3]\nS += 0.2 * np.random.normal(size=S.shape) # Add noise\n\nS /= S.std(axis=0) # Standardize data\n# Mix data\nA = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix\nX = np.dot(S, A.T) # Generate observations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fit ICA and PCA models\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from sklearn.decomposition import FastICA, PCA\n\n# Compute ICA\nica = FastICA(n_components=3, whiten=\"arbitrary-variance\")\nS_ = ica.fit_transform(X) # Reconstruct signals\nA_ = ica.mixing_ # Get estimated mixing matrix\n\n# We can `prove` that the ICA model applies by reverting the unmixing.\nassert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)\n\n# For comparison, compute PCA\npca = PCA(n_components=3)\nH = pca.fit_transform(X) # Reconstruct signals based on orthogonal components" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot results\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n\nplt.figure()\n\nmodels = [X, S, S_, H]\nnames = [\n \"Observations (mixed signal)\",\n \"True Sources\",\n \"ICA recovered signals\",\n \"PCA recovered signals\",\n]\ncolors = [\"red\", \"steelblue\", \"orange\"]\n\nfor ii, (model, name) in enumerate(zip(models, names), 1):\n plt.subplot(4, 1, ii)\n plt.title(name)\n for sig, color in zip(model.T, colors):\n plt.plot(sig, color=color)\n\nplt.tight_layout()\nplt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file -- GitLab