options(repos = c(CRAN = "https://cloud.r-project.org")) output_dir = "results/tp1" dir.create(output_dir, showWarnings = F, recursive = T) # Les données analysées nécessitant beaucoup de RAM, nous allons sélectionner aléatoirement 250000 SNPs et réecrire des fichiers bed, bim, fam penncath_bed_path = "results/data/penncath.bed" penncath_bim_path = "results/data/penncath.bim" penncath_fam_path = "results/data/penncath.fam" geno <- snpStats::read.plink(penncath_bed_path, penncath_bim_path, penncath_fam_path, select.snps=sample(1:861473, 25000, replace = FALSE ), na.strings = ("-9")) plink_base=file.path(output_dir, "plink_base") snpStats::write.plink(plink_base, snps=geno$genotypes, pedigree=geno$fam[,1], id=geno$fam[,1], mother=geno$fam[,4], sex=geno$fam[,5], phenotype=geno$fam[,6], chromosome = geno$map[,1], genetic.distance = geno$map[,3], position = geno$map[,4], allele.1 = geno$map[,5], allele.2 = geno$map[,6], na.code = ("-9")) genoBim<-geno$map colnames(genoBim)<-c("chr", "SNP", "gen.dist", "position", "A1", "A2") #head(genoBim) genotype<-geno$genotype #print(genotype) genoFam<-geno$fam #head(genoFam) # On commence par libérer de l'espace rm(geno) rdata_path = file.path(output_dir, "TP1_asbvg.RData") save.image(rdata_path)