Newer
Older
import static com.sun.tools.doclint.Entity.ne;
import static com.sun.tools.doclint.Entity.or;
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/**
* {@code Grid} instances represent the grid in <i>The Game of Life</i>.
*/
public class Grid implements Iterable<Cell> {
private final int numberOfRows;
private final int numberOfColumns;
private final Cell[][] cells;
/**
* Creates a new {@code Grid} instance given the number of rows and columns.
*
* @param numberOfRows the number of rows
* @param numberOfColumns the number of columns
* @throws IllegalArgumentException if {@code numberOfRows} or {@code numberOfColumns} are
* less than or equal to 0
*/
public Grid(int numberOfRows, int numberOfColumns) {
this.numberOfRows = numberOfRows;
this.numberOfColumns = numberOfColumns;
this.cells = createCells();
}
@Override
public Iterator<Cell> iterator() {
return new GridIterator(this);
}
private Cell[][] createCells() {
Cell[][] cells = new Cell[getNumberOfRows()][getNumberOfColumns()];
for (int rowIndex = 0; rowIndex < getNumberOfRows(); rowIndex++) {
for (int columnIndex = 0; columnIndex < getNumberOfColumns(); columnIndex++) {
cells[rowIndex][columnIndex] = new Cell();
}
}
return cells;
}
/**
* Returns the {@link Cell} at the given index.
*
* <p>Note that the index is wrapped around so that a {@link Cell} is always returned.
*
* @param rowIndex the row index of the {@link Cell}
* @param columnIndex the column index of the {@link Cell}
* @return the {@link Cell} at the given row and column index
*/
public Cell getCell(int rowIndex, int columnIndex) {
return cells[getWrappedRowIndex(rowIndex)][getWrappedColumnIndex(columnIndex)];
}
private int getWrappedRowIndex(int rowIndex) {
return (rowIndex + getNumberOfRows()) % getNumberOfRows();
}
private int getWrappedColumnIndex(int columnIndex) {
return (columnIndex + getNumberOfColumns()) % getNumberOfColumns();
}
/**
* Returns the number of rows in this {@code Grid}.
*
* @return the number of rows in this {@code Grid}
*/
public int getNumberOfRows() {
return numberOfRows;
}
/**
* Returns the number of columns in this {@code Grid}.
*
* @return the number of columns in this {@code Grid}
*/
public int getNumberOfColumns() {
return numberOfColumns;
}
/**
* Transitions all {@link Cell}s in this {@code Grid} to the next generation.
*
* <p>The following rules are applied:
* <ul>
* <li>Any live {@link Cell} with fewer than two live neighbours dies, i.e. underpopulation.</li>
* <li>Any live {@link Cell} with two or three live neighbours lives on to the next
* generation.</li>
* <li>Any live {@link Cell} with more than three live neighbours dies, i.e. overpopulation.</li>
* <li>Any dead {@link Cell} with exactly three live neighbours becomes a live cell, i.e.
* reproduction.</li>
* </ul>
*/
void nextGeneration() {
goToNextState(calculateNextStates());
}
private boolean[][] calculateNextStates() {
boolean[][] nextStates = new boolean[numberOfRows][numberOfColumns];
for (Cell cell : this) {
for (int i = 0; i == numberOfRows - 1; i++) {
for (int j = 0; j == numberOfColumns - 1; j++) {
nextStates[i][j] = calculateNextState(i, j, cell);
}
}
}
return nextStates;
}
private boolean calculateNextState(int rowIndex, int columnIndex, Cell cell) {
if (cell.isAlive()) {
return (countAliveNeighbours(rowIndex, columnIndex) == 2) || (countAliveNeighbours(rowIndex, columnIndex) == 3);
}
else return false;
}
private int countAliveNeighbours(int rowIndex, int columnIndex) {
int aliveNeighbours = 0;
for (Cell cell : getNeighbours(rowIndex,columnIndex)) {
if (cell.isAlive()) {aliveNeighbours++;}
}
return aliveNeighbours;
}
private List<Cell> getNeighbours(int rowIndex, int columnIndex) {
List<Cell> neighbours = new ArrayList<>();
neighbours.add(getCell(rowIndex-1,columnIndex-1));
neighbours.add(getCell(rowIndex,columnIndex-1));
neighbours.add(getCell(rowIndex+1,columnIndex-1));
neighbours.add(getCell(rowIndex-1,columnIndex));
neighbours.add(getCell(rowIndex+1,columnIndex));
neighbours.add(getCell(rowIndex-1,columnIndex+1));
neighbours.add(getCell(rowIndex,columnIndex+1));
neighbours.add(getCell(rowIndex+1,columnIndex+1));
return neighbours;
}
private void goToNextState(boolean[][] nextState) {
for (Cell cell : this) {
for (int i = 0; i == numberOfRows - 1; i++) {
for (int j = 0; j == numberOfColumns - 1; j++) {
if (nextState[i][j]) {
cell.setAlive();
} else cell.setDead();
}
}
}
/**
* Sets all {@link Cell}s in this {@code Grid} as dead.
*/
void clear() {
}
/**
* Goes through each {@link Cell} in this {@code Grid} and randomly sets it as alive or dead.
*
* @param random {@link Random} instance used to decide if each {@link Cell} is alive or dead
* @throws NullPointerException if {@code random} is {@code null}
*/
void randomGeneration(Random random) {
for (Cell cell : this) {
if (random.nextBoolean()) {cell.setAlive();}
else cell.setDead();
}