Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
courseML_phd2023
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
GILSON Matthieu
courseML_phd2023
Commits
2ca73268
Commit
2ca73268
authored
2 years ago
by
GILSON Matthieu
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
e9e9c186
Loading
Loading
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
data_time_series/test_classif_data.ipynb
+158
-0
158 additions, 0 deletions
data_time_series/test_classif_data.ipynb
with
158 additions
and
0 deletions
data_time_series/test_classif_data.ipynb
0 → 100644
+
158
−
0
View file @
2ca73268
{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"id": "349c8bc6-1a18-4fe2-869c-5581df684b1c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"from sktime.datasets import load_from_arff_to_dataframe\n",
"\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "47021efb-21dc-4ed2-8375-de1355344a16",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#dataset = 'FordA'\n",
"dataset = 'Cricket'\n",
"#dataset = 'Phoneme'\n",
"\n",
"X_train, y_train = load_from_arff_to_dataframe('{0}/{0}_TRAIN.arff'.format(dataset))\n",
"X_test, y_test = load_from_arff_to_dataframe('{0}/{0}_TEST.arff'.format(dataset))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "ea059511-2df8-447e-a064-ab23a2d4b6f5",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkhklEQVR4nO3dd5hTVfoH8G/KJJma6Y0ZmKEjTRikSRWlir27FDtrQWSxYENZENu66KpgBVdddfeHuqKsiEhTQIr0XmaYAaYwNVNT7++PJHfSpjHJ5Gby/TzPPE9yc29ycgm5b97znnNkgiAIICIiIgpScn83gIiIiMifGAwRERFRUGMwREREREGNwRAREREFNQZDREREFNQYDBEREVFQYzBEREREQY3BEBEREQU1BkNEREQU1BgMEVFQWrlyJWQyGXJycrzyfOfPn8cLL7yAvXv3euX5iKjtMBgiIvKC8+fP48UXX2QwRBSAGAwREflBTU2Nv5tARDYMhojIoxMnTuCOO+5AYmIi1Go1evXqhXfeeUd8vK6uDgMGDEDXrl1RUVEhbi8oKEBycjLGjBkDs9kMANi1axduu+02ZGRkIDQ0FBkZGbj99ttx5swZp9e0d1398ssvuO+++xAXF4eoqChMnz4d1dXVKCgowC233ILo6GikpKRg3rx5MBqN4vE5OTmQyWR49dVXsXjxYnTs2BEajQaDBg3C+vXrm/W+f/75Z4wbNw5RUVEICwvD5Zdf3uSxGzduxGWXXQYAuOuuuyCTySCTyfDCCy8AAGbOnImIiAgcOHAA48ePR2RkJMaNGwcAWLduHa699lqkpaVBo9Gga9eueOCBB1BcXOz2OkePHsXtt9+OpKQkqNVqdOzYEdOnT4der3c6/w888ADS0tKgUqmQmZmJF198ESaTqVnvnygYKf3dACKSnsOHD2P48OHo2LEj/va3vyE5ORlr167F7NmzUVxcjAULFkCj0eDf//43srKycPfdd2PVqlWwWCy48847IQgCvvjiCygUCgDWIKVHjx647bbbEBsbi/z8fCxbtgyXXXYZDh8+jPj4eKfXv/fee3HDDTfgyy+/xJ49e/D000/DZDLh2LFjuOGGG3D//ffj559/xiuvvILU1FTMnTvX6fi3334bnTp1wtKlS2GxWPDqq69i0qRJ2LRpE4YNG9bg+/7ss88wffp0XHvttfjkk08QEhKC9957DxMmTMDatWvFAMbVwIEDsWLFCtx111149tlnMWXKFABAWlqauI/BYMA111yDBx54AE899ZQYnJw6dQrDhg3DvffeC61Wi5ycHLzxxhsYMWIEDhw4gJCQEADAvn37MGLECMTHx2PhwoXo1q0b8vPz8d1338FgMECtVqOgoACDBw+GXC7H888/jy5dumDbtm1YtGgRcnJysGLFihZ+EoiChEBE5GLChAlCWlqaUFFR4bT94YcfFjQajVBaWipu++qrrwQAwtKlS4Xnn39ekMvlwk8//dTo85tMJqGqqkoIDw8X3nzzTXH7ihUrBADCI4884rT/ddddJwAQ3njjDaftl156qTBw4EDxfnZ2tgBASE1NFWpra8XtOp1OiI2NFa688kq318rOzhYEQRCqq6uF2NhYYerUqU6vYTabhf79+wuDBw9u9D3t3LlTACCsWLHC7bEZM2YIAISPP/640eewWCyC0WgUzpw5IwAQ/vvf/4qPXXHFFUJ0dLRQVFTU4PEPPPCAEBERIZw5c8Zp++uvvy4AEA4dOtTo6xMFK3aTEZGTuro6rF+/Htdffz3CwsJgMpnEv8mTJ6Ourg7bt28X97/lllvw5z//GY8//jgWLVqEp59+GldddZXTc1ZVVeHJJ59E165doVQqoVQqERERgerqahw5csStDVdffbXT/V69egGAmHFx3O7a1QYAN9xwAzQajXg/MjISU6dOxebNm8WuO1dbt25FaWkpZsyY4fSeLRYLJk6ciJ07d6K6urqJs9e4G2+80W1bUVERZs2ahfT0dCiVSoSEhKBTp04AIJ6bmpoabNq0CbfccgsSEhIafP7vv/8eY8eORWpqqtN7mDRpEgBg06ZNrWo/UXvFbjIiclJSUgKTyYR//OMf+Mc//uFxH9d6lrvvvhvLli2DSqXC7Nmz3fa/4447sH79ejz33HO47LLLEBUVBZlMhsmTJ6O2ttZt/9jYWKf7KpWqwe11dXVuxycnJ3vcZjAYUFVVBa1W6/Z4YWEhAOCmm25ye8yutLQU4eHhDT7emLCwMERFRTlts1gsGD9+PM6fP4/nnnsOffv2RXh4OCwWC4YOHSqem7KyMpjNZqduN08KCwuxevVqsWvNlac6JCJiMERELmJiYqBQKDBt2jQ89NBDHvfJzMwUb1dXV2PatGno3r07CgsLce+99+K///2v+HhFRQW+//57LFiwAE899ZS4Xa/Xo7S01CfvoaCgwOM2lUqFiIgIj8fY65b+8Y9/YOjQoR73SUpKuug2yWQyt20HDx7Evn37sHLlSsyYMUPcfvLkSaf9YmNjoVAocPbs2UZfIz4+Hv369cPixYs9Pp6amnoRLSdq/xgMEZGTsLAwjB07Fnv27EG/fv3ErExDZs2ahdzcXOzYsQNHjx7FTTfdhL///e947LHHAFiDAEEQoFarnY778MMPG+yyaq2vv/4ar732mthVVllZidWrV2PkyJFiUberyy+/HNHR0Th8+DAefvjhFr+m/f15ynQ1xB4guZ6b9957z+l+aGgoRo8ejf/85z9YvHixW8G53dVXX401a9agS5cuiImJaUnziYIagyEicvPmm29ixIgRGDlyJP785z8jIyMDlZWVOHnyJFavXo1ffvkFgDWg+eyzz7BixQr07t0bvXv3xsMPP4wnn3wSl19+OQYPHoyoqCiMGjUKr732GuLj45GRkYFNmzbho48+QnR0tE/ar1AocNVVV2Hu3LmwWCx45ZVXoNPp8OKLLzZ4TEREBP7xj39gxowZKC0txU033YTExERcuHAB+/btw4ULF7Bs2bIGj+/SpQtCQ0Px+eefo1evXoiIiEBqamqj2ZiePXuiS5cueOqppyAIAmJjY7F69WqsW7fObV/7CLMhQ4bgqaeeQteuXVFYWIjvvvsO7733HiIjI7Fw4UKsW7cOw4cPx+zZs9GjRw/U1dUhJycHa9aswfLly5vsaiMKSv6u4CYiacrOzhbuvvtuoUOHDkJISIiQkJAgDB8+XFi0aJEgCIKwf/9+ITQ0VJgxY4bTcXV1dUJWVpaQkZEhlJWVCYIgCGfPnhVuvPFGISYmRoiMjBQmTpwoHDx4UOjUqZPT8fYRXjt37nR6zgULFggAhAsXLjhtnzFjhhAeHu7UZgDCK6+8Irz44otCWlqaoFKphAEDBghr1651OtZ1NJndpk2bhClTpgixsbFCSEiI0KFDB2HKlCnCf/7znybP2RdffCH07NlTCAkJEQAICxYs8NhOR4cPHxauuuoqITIyUoiJiRFuvvlmITc31+l4x31vvvlmIS4uTlCpVELHjh2FmTNnCnV1deI+Fy5cEGbPni1kZmYKISEhQmxsrJCVlSU888wzQlVVVZPvgSgYyQRBEPwZjBEReUtOTg4yMzPx2muvYd68ef5uDhEFCA6tJyIioqDGYIiIiIiCGrvJiIiIKKgxM0RERERBjcEQERERBTUGQ0RERBTUOOliEywWC86fP4/IyEiP0+kTERGR9AiCgMrKSqSmpkIubzz3w2CoCefPn0d6erq/m0FEREQXIS8vr8mZ1xkMNSEyMhKA9WS6rjhNRERE0qTT6ZCeni5exxvDYKgJ9q6xqKgoBkNEREQBpjklLiygJiIioqDGYIiIiIiCGoMhIiIiCmoMhoiIiCioMRgiIiKioMZgiIiIiIIagyEiIiIKagyGiIiIKKgxGCIiIqKgxmCIiIiIghqDISIiIgpqARUMbd68GVOnTkVqaipkMhm+/fbbRvffuHEjZDKZ29/Ro0fbpsFEREQkeQEVDFVXV6N///54++23W3TcsWPHkJ+fL/5169bNRy0kX6k1mP3dBCIiaqcCatX6SZMmYdKkSS0+LjExEdHR0d5vELWJ304WY/rHO/CX8d3x4Jiu/m4OERG1MwGVGbpYAwYMQEpKCsaNG4cNGzb4uznUQm/+fAJmi4BXfzzm76YQEVE7FFCZoZZKSUnB+++/j6ysLOj1enz66acYN24cNm7ciFGjRnk8Rq/XQ6/Xi/d1Ol1bNZca0CEmFMix3rZYBMjlMr+2h4iI2pd2HQz16NEDPXr0EO8PGzYMeXl5eP311xsMhpYsWYIXX3yxrZpIzRCqUoi3DWYLNHJFI3sTERG1TFB0kzkaOnQoTpw40eDj8+fPR0VFhfiXl5fXhq0jT0xmi3jb6HCbiIjIG9p1ZsiTPXv2ICUlpcHH1Wo11Gp1G7aImmIyCx5vExEReUNABUNVVVU4efKkeD87Oxt79+5FbGwsOnbsiPnz5+PcuXP45z//CQBYunQpMjIy0Lt3bxgMBnz22WdYtWoVVq1a5a+3QBdB75gZsjAzRERE3hVQwdCuXbswduxY8f7cuXMBADNmzMDKlSuRn5+P3Nxc8XGDwYB58+bh3LlzCA0NRe/evfHDDz9g8uTJbd52unh1DnMMGZkZIiIiL5MJgsCrSyN0Oh20Wi0qKioQFRXl7+YEpTs/3I7fTpYAADY9Pgad4sL93CIiIpK6lly/g66AmgJPrVNmiN1kRETkXQyGSPJqjY6jyZjIJCIi72IwRJKnN9VnhjiajIiIvI3BEEmeY9eYgd1kRETkZQyGSPIMpvoAyMRgiIiIvIzBEEmeUzBkYTcZERF5F4MhkjzHoml2kxERkbcxGCLJc+4mY2aIiIi8i8EQSZogCE7ZIM4zRERE3sZgiCTNdV4hBkNERORtDIZI0lxrhNhNRkRE3sZgiCTNaHIOhpgZIiIib2MwRJLmmhkytmBoPQMnIiJqDgZDJGkGk2s3WfMCnE+35aD3grX47WSxL5pFRETtCIMhkjS3zFAzg6Hn/nsIBpMFT67a74tmERFRO8JgiCTNNTPU0lXrBdZbExFRExgMkaS5ZoKaM5rM8Zhz5bUQGBEREVEjGAyRpF3MPEN5pTVO9w+cq/Bqm4iIqH1hMESS5lowbbQ0HQzllFQ73c8rrfVqm4iIqH1hMESSZnYZSm80Nd3lVajTO93Pr2AwREREDWMwRJLmOq+QqRmZoTqj2el+QUWdV9tERETtC4MhkjS3brJmFFDXGZ2PKa0xNLhvSZUeh8/rLq5xRETULjAYIkm7mALqWltmKEQhAwDoao0e9zuSr0PWop8x+a0t2JtX3rqGEhFRwGIwRJLmWjPUnBmo9bZgKDFSAwDQ1Zrw28liDF+yHv/de07cb/rHO8Tb3+45ByIiCk4MhkjSXGuEmrM2mb1mKDFKDQCoqDXizg9/x/mKOjz65V7oTWbkFFfjQmV9ofVvJ4s5HxERUZBiMESS5tZNZmpOAbV1nyRbZqi81rlmKKe4Br+6rFl2oqjKbRQatU8bjxXhjg+2I7ekpumdiSgoMBgiSXPtFjM1JzNksmaGkmyZIdcg52iBDnll1gvh9GGd0DkhHADw+e9nPD5ftd7U7rJGepMZ87/ejwc+3eVWQF5abcD8r/fjaEHbFZZX1BhRpTe1yWvNXLETW0+ViOvWWSwCymsMbl2yRBQ8GAyRpLkGP80qoDbYu8k0Hh//5WgRDp2zXug7xYWLGaSNxy647fvdvvPovWAtvv7DfzVFJrMFS/53BJPe3IKPf80WA7P1Rwrx64niJo52JwgCejz7I77YkYe1hwox+a0tToHAU6v244sdebh52bYGn8NgsmDlb9lus323xOHzOny5IxfXvv0r+i/8CX0WrMXpC1UX/XwtddL2Wrd9sB2XLlyHMa9vaLPXJiJpUfq7AUSNcR9a34xuMltXWkKE2uPjv58uRYHOOvfQ8C5x6JYYgW2nS1Coc56PqLhKj9lf7AEA/OU/+zCyWzwUchnWHS6EXCbDmB4JDQZcjREEAdtOlaB/ejTC1U3/F1x7qBDvbToNAFj4/WEs/P4wVsy8DPd8sgsAsOWJsVCHyDF48XoAwJf3D8XQznENPt8fueVu21bvO4/rBnRAZZ0RPx0uBABU6k04WVSFrokRyCutwfbTJRjeNR4v/+8oVu87DwB4YfVhvHR9X4zsFo/02LAGX/NYQSX2ny3Hlb2SEBOuwqs/HsW7G0+57XfF3zahV0oUThVV4Z/3DG70fbSW0WyBIAjYkV0KwDpTeZ3RjO/2nccT/7cfz07phTUH8nE4X4fNT4wVC/KJqP1hMESSZs8MhYYoUGs0N3OeIWtmKEytQKRaiUpb90tSlBqFOr0YCHWIDkWvlCjER1i70S5U6WE0WxCisCZMJ7+5xel5v95zDt/8cQ7HCiudtl93aSrmTeiBCLUS0WEqsQ3lNUaYBQGfbjuD5ZtO4a/X9UFuSTU+2JINAOidGoUfZo/EH7lluOHdrQCA2eO64dFx3VBeY8Bz/z2ImwelY/vpErf3eNfKneLtka86ZzRue387dj97JeIi1Hhj3XG8tf4EFl3XB3cO6Ygj+ZW4cdlWt+dbcyAfk/omY+2hQqft6w4XoqCiDn/66PcGz/fT3xwAACy6rg+Gd4lDtd4MsyAgUqNEmEqBD7dk46Nfsxs83tWRfJ34Ph6f0AM3DOyA6FAVQlWKZj9HQxy7Ow0mC3R1zl1zxwsr8cT/WbvPFv1wRNx++/vbsf4vY1r9+kQkTQyGSNLswU+4Wolaoxl6k7mJI6wXOQBQKxWICg0Rg6H+adFi1gMA0mNDAQBx4SqEKGQwmgXsP1uB37NLUKM3o6jSudbo5f8d9fh63+49j2/3WjMl3z50OfqnaTHilV9QXOVcuP3ctwed7h86r8OkN7eIF38AeGv9CVTWGfHptjMwWQSsOVDQ5Pv1JGvRz3jnjoF4a/0JAMCz3x7Esy6v/+yUXkiLCcOsz3bjp8OF6PHsj27Pc7ywEh9uOd2s13R9/pbonhSB44XuXWSvrT2G19YeAwAc/etEaEJaFxBVOtQl6U0Wt6Va9njImgHAqQvVHrcTUfvAmiGSNLNtaH2kxhq3u84u7Yk9GApRyBAVGiJu75kciShNffzfJSECACCXyzC2RyIA4MZlW/Hqj8fw9oaT4n6PXdm92e297p3f8MT/7XcLhBriGAjZrfgtx2Oh+IfTB2HH0+Oa3ZaH/vVHo4/PHJ6B8ZckeT52bBcAwDd7zqGk2v29zLmyG35/ehwen9Cj2e1xldUpBqv+PBzfPzICPz02Gh9OH9To/jcvb7iGqbkcp1MwWwTstHWR2e1rYPJNpVzW6tcmIuliMESSZs8MRdhqa+zF0Y0x2OqKVEo5oh2CoSStBjdmpYn3bx/cUbw9c3iGx+dKjtLg4Su6Om1L0Wrw89xReGBUZ8RHqNyO+c/us4227+p+KXju6kuafB+uruiZiMQoDSb2TgYAfP/ICHx6z2Dx8YXX9sZ/H7q8Wc/1+b1DoFTIIZfL8OpN/dwef+zK7uI5t/v+kRGYOTwD/35gGOZc2R1JURo8NLYrcl6egrfvGCDuN2NYJ9x9eabTsVf3S8Hqh0fgziEd8ecxXbD3+auw6s/DkdUpBn06aAEAV16ShJyXpyDn5SnY/eyVbm06cK6iWe+tMRdcsn2u/1Ybj7sX0QOATIZ2N6KQiOqxm4wkzT7pov3C3JxuMnuRtVopR0Z8OLbZam6SIjUIV9V/5C9JiRJvD+sSh1HdE7DZ4WKYGKnGZ/cOhkIuw7zx3fH6T8cxoms8Pr1nMGQyGeZP7oX5k3uJ7XLtZlp512UYY8s4AdaLqUxWn2GI0ijx+P/tR3RYCHY8fSUMZgv6LFgrPp4QqRYv3pseHwO5LTuxfFqW0+vkvDzF6f7plyaj89NrxPvfPXw5duaUYem64xjSORZ/v/VSRGrqg8RbBqXjlkHp+HRbDj7bnou/3dIfSoXcaaj72B4J6NNBKwYurq7ul4qr+6U6bXt+qnvA1zetr8fjXcVFqMX3tftMmVjn9Ptpa+G5SiFHXlkNOkSHQqlo/m8612DoZJG1a25Y5zhsO12CUg9ZMMAalFfqTYhyOG9E1H4wGCJJM9kzQw7dZK5BhSt7N5lKoUC3xAhxe1KUBmNSIrHvbDkuTY8WgwsAkMlk+Ofdg3GhUo8ItRJGi8XpwvfnMV1xx5BOiA13zwQB1vqk1Q+PwNS3fwVgzR45BkL213B0U1YaRvdIQEKEGjKZDCqlHClaDfIrrAXeK2ZehhStBmEqZYuKh+VyGV6YegleWH0Yz07phX5p0eiXFo17RmQ2ety0YRmYNixDvP/ExB549Udrvc6yP2U1cJTvDewYLd6+9f3tSIpSY0hmHL7bdx5T+qXgnTsGNvu5ylwW7a2xZRo7J9QHza7sRfi5JTUNBoNEFNjYTUaSZq+dibRlhqr0Jgxa9DO+2JHb4DFiMKSUY2zP+oAkLcaaRVgwtTeuvbSDx2MTItUIVSncMgAKuazBQMiub5oWz07phTE9EvDz3NFNvjeZTIbESI1TkPTD7JEY2DEaf7mqO/p00CIuQn1Ro6hmXp6JnJen4N6RnVt8rN29Izrj6weH4/RLk1tduNwaMpkMgzrFiPcLdXp8Zxva/8P+fLci6MbUNNDNmhkf7nR/RNd48Xb/9GgA4GK+RO0YM0MkafZ5hiIcCp9Lqg2Y//UBp5ofR44F1Jnx4fj6weGoNZgR00Qw4w33juzcqgAkNlyFrx9sXt2Pr6mUcgzsGNP0jm3g03uGoNfz7qPdACD7QjVStKHNep6Gas4y4pyDoVmju+DWy9LRPSkSX+7Mxa8ni3G2rPlBFxEFFmaGSNLsC7NGapoftzsWUAPAwI4xuNzhlz4FnlCVAkf/OtFp9FtGnHWSxzMtmAW71thAMBTvPGFkp7gwTO2fih7JkYixzR1VUdu8EYJEFHiYGSJJs2eGwlRK24iexvcXBMEtGKL2QROiwPvTB6HGYIKu1oTlm05h5dYc5JQ0fw4gT5mhKI0SmfERTtuSHGYWjw6zdpmWVRsvsuVEJHW8WpCk2WuGlHIZ1C7BTY3BfWFPk0UQAya1wn91LuQ7YSolkrUadLJnhoqbnxmy1wwNzogVt/VPj4ZCLkOWQ12SYyBtn1W8nJkhonaLwRBJmn00mVIhd5v3pqCizm1/e70QwMxQe2ev82lJZsi+VMuQzvXBUIdoa73R0lsvhSZEjsl9k52OibFlhsprmBkiaq/YTUaSZp9nKEQhQ5QmxGlm54KKOnROcO7ecAyGQhScNbg9s2eGcktrmpxuwc6eTUyPqa8Rsk/smR4bhp3PXIkwlfPXon2B1nNltbBYBKcpGYiofeBPZ5I0+4VKKZe7LVGR7yEzZJ9wUS5Diybjo8CTFhMGucza9XWhSt/0AagvoA5VKcSpEsb2TBAfj9SEQOES7HRJCEdoiAKVehNOXXBfP42IAh+vFiRpZoeaoTKX2YErat27LfQmFk8HC5VSjlRbF1dOM+uGam1r22lCFFj9yAgsu3MgpvRNafQYpUKOLonWLrnPtp/BFX/biJ05pY0eQ0SBhVcMkjR7pkepkDmtOA54HiYtjiRjVigo2BfbtS+r0ZQ6WwF1mEqBDtGhmNQ3pVnda7HhagDAJ9vO4PSFajzyrz3iYx9sPo33N59qadOJSEJYM0SS5lhArVbKxcwP4Hk0mYGZoaDSLTECm45faHYwZA+gWzqjdpzLhJ0FOmsXbUWtEYvXHAFgHY7f0MzmRCRtvGKQpIkF1HIZPpwxCJ3jwzHAtlZVrcHitn/9umT8aAeDrra1504UVTZrf7FmqIXBkCbE+fNkH9no2HX7ydacFj0nEUkHrxgkafaiaYVchpHdEvDLvDEYa1sAtdbonhkycsLFoNItqYXdZGJmqGWfj4RIjdP9Kr0Jhbo6p4VfG1rxnoikj1cMkjR7N1mIQ6bH/qve06Kb7CYLLt2SIqGQy5BfUYczzZhvqM5hNFlLTBvayW3b4Xwdyh2K+D0V9BNRYOAVgyTNsYDazn4h87S0gp6ZoaASpQnBUNsEiv87WNDoviazRZyqoaXdZAmRaqy86zJcdUkSeqVEAQB0tUaUO2SGdHUmCE2tF0NEksQrBkla/XIc9R/VMHsw5DCa7NSFKlzxt4344vdcAM6ZJGrfJvWxDo1/a/2JRrNDdQ7F9y0toAaAMT0S8cH0QegUa52wsaLWiFKH9crMFgHVHgJ0IpI+XjFI0sR5hhwyQ/ZgyLGbbNH3h3H6QjV+OlwIgAXUweT6AR3QIToUNQYz7l65s8HsjD2TKJPBbZ27ltCGWpfn0NUaUahznviTXWVEgYlXDJI0sZvMYVZgjYeaoTqj88gydpMFj3C1Eq/d1A8AcOpCdYPF1GLxtFLRrLmFGqK1rVVWUWt0mwW9uLJ5M2ETkbTwikGS5qmA2r52VJ1DN1mYS0Fsa375U+AZ3jUePZIiAQBFDQQktRdZPO3KnhmqqDWioKLW6bG8subNhE1E0sIrBkmafZ4hz91k9UPrXS9wzAwFH/tnxHUNO7u6i5xjyFV8hHUCxgKdHmW2leyTo6xD7/NKaxs8joiki1cMkjSTw9pkdqEeaoZcgx8WUAcf+2fEZHafjBOorxlq6RxDrtJtBdRnS2tQY1sixj75Y1Gl++LBRCR9AXXF2Lx5M6ZOnYrU1FTIZDJ8++23TR6zadMmZGVlQaPRoHPnzli+fLnvG0peYzK7jyaz/7J37Carc1mnjAXUwUdp+zdvKDN0sUtxuEqPsQVDZbXienmJUda1y2r0HE1GFIgC6opRXV2N/v374+23327W/tnZ2Zg8eTJGjhyJPXv24Omnn8bs2bOxatUqH7eUvEVvsl5c1CHuQ+uNZgFGswV6kxlrDjjPMcNusuCjEDNDvu0mS4i0Bj4GswWVddZgKMnWTVblYb08IpK+gFqoddKkSZg0aVKz91++fDk6duyIpUuXAgB69eqFXbt24fXXX8eNN97oo1aStxgdJskLC6n/qDrWB9UYzDh9wX30UGt//VPgCRFrhjx3k9lHHLa2gFoTooBKIYfBoTsu0RYgVesZDBEFonb983nbtm0YP36807YJEyZg165dMBo5H4jUOU6qqFHVf1RVCjnsJUS1BjNyS91H8ISrAyrOJy+wd6U2lBnyVjcZAERqnD9fCQyGiAJauw6GCgoKkJSU5LQtKSkJJpMJxcXFHo/R6/XQ6XROf+Qf9oJXhVzmVAMkk8nE4fW1RjPOlrmP4IlQMzMUbMQC6gYyQ/UF1N4NhkJDFIjUWIfbV7NmiCggtetgCIDb5Gr22WkbmnRtyZIl0Gq14l96errP20ie2S9eoSHuk+SFOgyvv+BhXhl7sETBw3Vo/dpDBbh5+Vbk2TKH4jxDrRxNBkAMfqy3lWLwXc2aIaKA1K6DoeTkZBQUOBfWFhUVQalUIi4uzuMx8+fPR0VFhfiXl5fXFk0lD2oa+SUf5rBYq67Ovcszgt1kQce1m+yBT3djZ04ZZny8AwCg91IBNeCcGcqICxe7ZavqGAwRBaJ2fcUYNmwYVq9e7bTtp59+wqBBgxASEuLxGLVaDbVa3RbNoybYf8m7zi4N1F/Qao1m6DysB8WaoeDT0KSLp4uti7faF1HVtLKAGgDiIuq/I7okRiA61DoRY3mtERaLALn84pf7IKK2F1CZoaqqKuzduxd79+4FYB06v3fvXuTmWlcqnz9/PqZPny7uP2vWLJw5cwZz587FkSNH8PHHH+Ojjz7CvHnz/NF8aqHGhkI7TrxoXxwzVasRHw9nzVDQUTQx6WKlLYMYpfH8Q6gl+qdpxdud4sIQE259TrNFEIfbE1HgCKhgaNeuXRgwYAAGDBgAAJg7dy4GDBiA559/HgCQn58vBkYAkJmZiTVr1mDjxo249NJL8de//hVvvfUWh9UHCHs3maeh0E7dZLXWi09KdKj4OLvJgk+IvOFJFy0OQUqUpvWfjT4d6oOhFK0GaqVC/MyVVHOxVqJAE1BXjDFjxogF0J6sXLnSbdvo0aPxxx9/+LBV5CviKuMeCl5DbfMOOWaGUhwyQzFhqjZoIUmJQuE86aJSLhMDo4paoxgMRXohM9TNtvwGUL9wa2y4ClV6E0qrDeic0OqXIKI2FFCZIQouepO1u0OlbLibrNZYX0DtGADFhjMYCjYhDkPrjWaLU4aopNogfk5c5wi6GI41Q92TIgEAMWHWoMi+eCsRBY6AygxRcDHYgyEP64yF2eqIdLVGsTtNrXRfsoOCh+PaZK51O1V6k1czQwCw5YmxKK8xItXWPRthC7I48SJR4GEwRJJl8LAumZ09M1Soq18l3HE9sobmkaL2y3HV+kqX6Raq6kziNm9khgDr6vXpsfX37XNbVTEYIgo47CYjybKv/aT2kBmyB0MFtmAoUq3EhN7JAIAODoXUFDwch9bbi+rtqvRG6MTMkG9+A9oLqJkZIgo8zAyRZIndZB5WoLd3k208dgEAUKk3oX96NNbOGYWUaI3b/tT+KRwmXXTNDBVXGcTPk7e6yVyFi7NQc0kOokDDYIgkq7FgqKGVx3skR/q0TSRd9QXUgtus5PkV9evX+WrahXBmhogCFrvJSLL05kYKqF3WHps5PKMtmkQSVj+03uLWTZZfXt+dqvDR7NARKgZDRIGKwRBJlt7YWGbIeduo7vFt0iaSLvuki2YPmaG8Mutirb6qFwLqM0MsoCYKPAyGSLLsBdQeg6EQ54tahNo3dSAUOOwZH6NFEIul7U4UVQHwXb0QUD+3VUmVwWevQUS+wWCIJMteM6T2MOmi6zxCXH6DQhTuQ+sz4sIAAOW2iRATIn23CHNSlLVw33G6ByIKDAyGSLIaHU3mEgz5svuDAoPjpIv2miH77NB2XR2W0fA2+3Iw+RV1jS4bRETSw2CIJKuxYEgTwswQOXNctd5eM+QaDHVOCPfZ6yfbgqFaoxkLvz+MwYt/Rl5pjc9ej4i8h8EQSVZjky66ZoKYGaIQh0kX7d1kXRLD4Th4LFXruwk5NSEKMWO54rccFFXqMfLVDcwSEQUABkMkWXrbchyeMkNRDoWwEWql2EVCwct50kVrN1l0mMqpTsievfEVTwsEF7CGiEjyeAUhyWqsmywqtD4Y8tW8MRRY7JMumi0Cam2zQIerlMiIq+8a83UwFOchGCqu5OgyIqljMESS1diq9Y4BkL17hIJb/dB6C2qN1mAoNESB+ZN7IT02FNf0T/UYrHiTp8zQhSpmhoikjoUWJFl6+9B6D6vWO2JmiAAgRFE/6aIYDKnk6JoYiS1PXNEmbejTQYsNtvXy7M6XMxgikjpmhkiyDI0sx+Ho8q6cfZocMkPm+m4yT3NU+dLcq7ojVatBmEqB6wd0AAB8v/88LBaBhdREEsbMEElWYzVDAPCP2wfgx4MFeOGa3m3ZLJIopcIeDFnErGJDC/r6ikwmw//mjEKd0Yz8ijp8s+cctp8uReen1yAzPhxr54xq8PNMRP7DYIgkq6lgaGr/VEztn9qWTSIJU9pGkzkulBoa0rbBEABoQ0OgDQ2B0qX7Nru4GmdKqtHNZe4jIvI//kQhyRJrhvhLmprBnhmqcliXzHVyzrbkqZjavmAsEUkLrzIkWfWjyfx3QaPAYV+1vtKWGVIp5H4trpfJ3F87p5jBEJEUMRgiyRJnoG5iNBkR4D6qUCOBz823D13udP/g+Qo/tYSIGuP/bwsiD8wWAWaLdfRNU6PJiAD3+ab82UVmd2l6NL66fyiemNgDAHDonM7PLSIiT3iVIUmyd5EBDRdQEzlyzQxJJaM4pHMcRndPAACU1nA2aiIpksa3BZELBkPUUiEuGUTX+/5kX0tPV2v0c0uIyBPpfFsQOdCbrZPmyWRwG6JM5IlrZkhK3avaMGswpDdZUGebHZuIpEM63xZEDvTG+tmnPY3KIXKldKkZklJGMUKlhP1jzOwQkfRI59uCyIG4FIeELmgkba6ZICl1k8nlsvqusjoGQ0RSI51vCyIHBnHCRf+PCKLA4PpZcR1d5m/Rtq6yshoGQ0RSw2CIJMnA2aephVyziFLKDAFAfIQaAFBcqfdzS4jIlbS+LYhs2E1GLaWQy5yK7aUWSCfYgqELVQyGiKRGWt8WRDb1S3HwI0rN5xgASS0zlBBpC4aYGSKSHGl9WxDZ6E3W4cfMDFFLqB1mnZZaMCR2k1Vx4kUiqZHWtwWRjZgZYjBELeCYGZLaZydcbQ3Uqm0LyRKRdEjr24LIRs9uMroIUu4mi1ArATAYIpIiaX1bENmIo8kksr4UBQbH4fUqiQ2tD7cHQwYGQ0RSwysNSZI4mkxiv+5J2hyDZ+lmhrgcB5HUSOvbgsiGNUN0MaRcMxSmYs0QkVRJ69uCyIbBEF0Mx24yqWWG7N1kVQyGiCRHWt8WRDZ6zkBNF0ETIt3MEAuoiaRLWt8WRDacdJEuhj37Akjvs6MNta5NVm0ww2iriSMiaZDWtwWRjb2A2nESPaKmRDgEQ1JbqFUbGgL7aiFl1Zx4kUhKGAyRJDEzRBcjQuMQDEmsm0wulyEmTAUAKGEwRCQp0vq2ILLRs4CaLkKkU2ZIep+d2HBrMFTKYIhIUqT3bUFB6XhhJWocJqPjaDK6GI41Q1IsvmcwRCRN0vu2oKDz2fYzGP/3zXjhu0PiNnGhVgn+uifpipB4ZijKVkStqzP6uSVE5Eh63xYUdJ799iAA4N+7zorbmBmiixGpkXYwZG9fZR2H1xNJibLpXYh8K0qjhM52cbjh3d9QUFEHjW0UGYMhaokIdYh4W4qfnSiNtX2VzAwRSQqDIfK72HCVGAz9kVvu9JgU6z5IupxGk0lsaD3AzBCRVPFKQ35nFoQGH2MwRC0RIeFJFwEGQ0RSJb1vCwo6tYaGV/GWYlcHSZf0a4bYTUYkRdL7tqCg02gwpOAM1NR8jkPrLY1kHP3FPulicRWH1hNJCYMh8itBEFBjbDgYUofwI0rNF+awfIt94k4pSdFqAAAFFXV+bgkROeKVhvxKb7KgsR/w4SrW+FPzyeX1RdMZceF+bIln9mCoqLIOJi7WSiQZvNKQXzXWRQYA4Wp2k1HLbH58LHR1RiTbAg8piYtQQyGXwWwRUFJtQFKU9NpIFIwCLjP07rvvIjMzExqNBllZWdiyZUuD+27cuBEymczt7+jRo23YYmpMrUMXmUwG9O2gdXo8VMVgiFqmY1wY+rh8jqRCIZchylbkXVHLImoiqQioYOirr77CnDlz8Mwzz2DPnj0YOXIkJk2ahNzc3EaPO3bsGPLz88W/bt26tVGLqSn2uo5ItRL7FozHl/cPdXqc3WTU3ohLcjAYIpKMgAqG3njjDdxzzz2499570atXLyxduhTp6elYtmxZo8clJiYiOTlZ/FNwhJJk2NcgU4fIEaUJQZhLJig0hP9W1L5obcEQM0NE0hEwwZDBYMDu3bsxfvx4p+3jx4/H1q1bGz12wIABSElJwbhx47Bhw4ZG99Xr9dDpdE5/5Dv2NcjUSmvQI5M5zxrsWBBL1B7Yl+RgMEQkHQETDBUXF8NsNiMpKclpe1JSEgoKCjwek5KSgvfffx+rVq3C119/jR49emDcuHHYvHlzg6+zZMkSaLVa8S89Pd2r74Oc6T0syKpkAETtmJbdZESSE3AFGa6ZA0EQ3LbZ9ejRAz169BDvDxs2DHl5eXj99dcxatQoj8fMnz8fc+fOFe/rdDoGRD6kN9ozQ/XBkMkivcnyiLwlJtwaDJVUc+JFIqkImMxQfHw8FAqFWxaoqKjILVvUmKFDh+LEiRMNPq5WqxEVFeX0R74j1gxx2Q0KEh2iwwAAeaU1fm4JEdkFzBVIpVIhKysL69atc9q+bt06DB8+vNnPs2fPHqSkpHi7eXSRXGuGAOD1m/tDpZTj45mD/NUsIp/pGGsLhspq/dwSIrILqG6yuXPnYtq0aRg0aBCGDRuG999/H7m5uZg1axYAaxfXuXPn8M9//hMAsHTpUmRkZKB3794wGAz47LPPsGrVKqxatcqfb4MceKoZuikrDdddmgqlBBfaJGqt1GguyUEkNQEVDN16660oKSnBwoULkZ+fjz59+mDNmjXo1KkTACA/P99pziGDwYB58+bh3LlzCA0NRe/evfHDDz9g8uTJ/noL5KKhbjIGQtRexYWrAQAl1Xo/t4SI7GSCIMGlnSVEp9NBq9WioqKC9UM+8M9tOXj+v4cwuW8y3r0zy9/NIfK5Kr0JfRasBQAcXjgBYZxYlMgnWnL95s9v8it7zZCKmSAKEuEqhdgtXFLFEWVEUsArEPmV3kMBNVF7JpPJEBeuAgAUV7GrjEgKGAyRX+mN9ctxEAWLzPhwAMDRgko/t4SIAAZD5Cf/t/ssbl6+FefKrSNqOM8QBZP+6dEAgAPnKvzbECICEGCjyaj9mPeffQCAnTllAJyH1hO1dxlx1rmGzpdzriEiKeAViCSBNUMUTJKiONcQkZQwGCJJYDcZBZMUbSgAILe0Biazxc+tISJegajNeZraisEQBZNOcWHQhoagxmDGj4cKmj6AiHyKVyBqc3VG91/CKnaTURDRhChw/YAOAIBnvz3o59YQEYMhanMVtUa3bcwMUbAZ1iUOAFBeY+QK9kR+xisQtbla29xCjjjPEAWbq3olibdzSqr92BIi4hWI2pynglGOJqNgI5fLMK5nIgBrITUR+Q+DIWpzRrN7ATXnGaJglGGbifpEYZWfW0IU3HgFojZn9JgZ4keRgk+/NC0AYE9euX8bQhTkeAWiNmeyMBgiAoBeKVEAgJxi1gwR+ROvQNTmPHWTRai5MgwFn2StdSbqilojagwmP7eGKHh5NRh6+umncffdd3vzKakdMnkKhjQMhij4RKqVCFdZBw9waQ4i//FqMHTu3Dnk5OR48ympHTJ66CZjZoiCkUwmE7NDDIaI/MerV6BPPvnEm09H7ZTR5B4MhasYDFFwStZqcOpCNQp0DIaI/IU1Q9TmTBb3bjK5XOaHlhD5X3KUddHWfGaGiPzmon6OL1y4sNHHn3/++YtqDAUHT0PriYJVCrvJiPzuooKhb775xum+0WhEdnY2lEolunTpwmCIGuVaQN09KcJPLSHyP3vNEDNDRP5zUcHQnj173LbpdDrMnDkT119/fasbRe2bPTM0pkcCruyVJE48RxSM7JmhQtYMEfmN12qGoqKisHDhQjz33HPeekpqp4y2miGNUoE/De2EfmnR/m0QkR8xM0Tkf14toC4vL0dFRYU3n5LaIftCrUoFi6aJUrTWAuriKj3qjGY/t4YoOF1UN9lbb73ldF8QBOTn5+PTTz/FxIkTvdIwar/sNUMhCg5mJIoJC0GURgldnQk5JdXomRzl7yYRBZ2LCob+/ve/O92Xy+VISEjAjBkzMH/+fK80jNov+6SLSg6nJ4JMJkNmQgT25ZUj+wKDISJ/uKhgKDs729vtoCBiNNkyQ1yclQgA0CU+HPvyynGaC7YS+QWvRtTmzMwMETnJjA8HAGQzGCLyC68GQ++++26TEzIS2WegVjAYIgIAZCYwGCLyJ68GQ6tWrcLKlSu9+ZTUDpkFWzAkYzBEBNRnhk5fqPJzS4iCk1dXx1y/fr03n47aKbNtNJmCQ+uJANQHQ2U1RpRVGxATrvJzi4iCS6uCocOHDyM3NxcGg0HcJpPJMHXq1FY3jNovZoaInIWplEiKUqNQp0duaQ2DIaI2dlHB0OnTp3H99dfjwIEDkMlkEGwXN5nt4mY2c+IwapiFNUNEbtJjwlCo0yOvrAb906P93RyioHJRNUOPPvooMjMzUVhYiLCwMBw6dAibN2/GoEGDsHHjRi83kQLV9tMl+PfOPLft9syQnJkhIlF6bBgAIK+01s8tIQo+F5UZ2rZtG3755RckJCRALpdDLpdjxIgRWLJkCWbPnu1xIVcKPre9vx0AcElqFLomRmDz8QsY0S0eZltmiEPrieqlx1iX5cgrq/FzS4iCz0UFQ2azGREREQCA+Ph4nD9/Hj169ECnTp1w7NgxrzaQApO96xQAiirr8P3+fCzfdAqT+iQjUmP92MkZDBGJ0sTMEIMhorZ2Ud1kffr0wf79+wEAQ4YMwauvvorffvsNCxcuROfOnb3aQApMVXqTeFsTosAXO3IBAP87WADbOq2sGSJykB5jDYbOlrGbjKitXVQw9Oyzz8Jim0V40aJFOHPmDEaOHIk1a9a4LeJKwUlXVx8MyWUydLZNKgcAFo4mI3KTrNUAAIp0dX5uCVHwuahusgkTJoi3O3fujMOHD6O0tBQxMTHiiDIKbhU1RvG2ySwgRF4fd3MGaiJ38RHW4fTVBjNqDWaEqhR+bhFR8PDaDNSxsbEMhEhUUVsfDBnMZgioryGqM1qnXmAwRFQvQq2EyrZ4cUm13s+tIQouXKiVfKLaoWbIYBLgUE8tPsYCaqJ6MpkM8bbJFkuqDE3sTUTexGCIfMJkqykDAIPZAqO5/r49GGLNEJGzuAg1AGaGiNoagyHyCaO5PhVkNFlQY6iflbzSFgxxniEiZ3G2uqHiSmaGiNoSgyHyCcfMkNHsHAxV1bGbjMiTuHBrZqiYmSGiNsVgiHzCaKrPDBnMFtQY6muIxG4yfvqInNhHlLFmiKht8XJEPmF0rBly6Sartt3m2mREzsRusipmhojaEoMh8gmTQ82Q3mSB3mRx20cp58ePyFF0mDUYKnOYp4uIfI9XI/IJx9FjjnMOOWI3GZGzWFswVF7DbjKitsTLEfmEfZZpoOEvdnaTETmLCQ8BAJQxGCJqUwyGyCdMzcoMMRgicmTvJiuvZjcZUVtiMEQ+4TjPkK7W5HEfBkNEzmJswVCl3uTU1UxEvsVgiHzCcZ4hXR0zQ0TNoQ0Ngb33uJxF1ERthsEQ+YTjaLLKugYyQ6wZInKikMsQpbHWDbGImqjtMBgin3DqJmsgM8QZqIncxYTZi6iZGSJqKwyGyCecuskaKKDm2mRE7urnGmJmiKitBFww9O677yIzMxMajQZZWVnYsmVLo/tv2rQJWVlZ0Gg06Ny5M5YvX95GLQ1ujpkhh1H2TpgZInJnzwyxm4yo7QRUMPTVV19hzpw5eOaZZ7Bnzx6MHDkSkyZNQm5ursf9s7OzMXnyZIwcORJ79uzB008/jdmzZ2PVqlVt3PLgY2rGSBjWDBG5i+Es1ERtLqCCoTfeeAP33HMP7r33XvTq1QtLly5Feno6li1b5nH/5cuXo2PHjli6dCl69eqFe++9F3fffTdef/31Nm558DE1lA5ywNFkRO7YTUbU9gImGDIYDNi9ezfGjx/vtH38+PHYunWrx2O2bdvmtv+ECROwa9cuGI2ef3Xp9XrodDqnP2q55syRolQwGCJyFWubhZoTLxK1nYAJhoqLi2E2m5GUlOS0PSkpCQUFBR6PKSgo8Li/yWRCcXGxx2OWLFkCrVYr/qWnp3vnDQQZx6H1dpoQ548bF2olcsfMEFHbC7irkcylzkQQBLdtTe3vabvd/PnzUVFRIf7l5eW1ssXByVM3mTY0xOk+R5MRuYsRF2tlZoiorSj93YDmio+Ph0KhcMsCFRUVuWV/7JKTkz3ur1QqERcX5/EYtVoNtVrtnUYHMYvgHgxFaUJQqNOL99lNRuSufp4hZoaI2krAZIZUKhWysrKwbt06p+3r1q3D8OHDPR4zbNgwt/1/+uknDBo0CCEhIR6PIe/wlBmKcssMBczHj6jNRHM0GVGbC6ir0dy5c/Hhhx/i448/xpEjR/DYY48hNzcXs2bNAmDt4po+fbq4/6xZs3DmzBnMnTsXR44cwccff4yPPvoI8+bN89dbCBoWD8FQpMY5EcnMEJG7mPD6eYYEDxlWIvK+gOkmA4Bbb70VJSUlWLhwIfLz89GnTx+sWbMGnTp1AgDk5+c7zTmUmZmJNWvW4LHHHsM777yD1NRUvPXWW7jxxhv99RaChuMM1HaRGtYMETXFXjNksgio0pvc/t8QkfcFVDAEAA8++CAefPBBj4+tXLnSbdvo0aPxxx9/+LhV5MpDLOQhMxRQiUmiNqEJUUATIked0YKyaiODIaI2wKsR+YTnzJBLMMTMEJFH8RHWQRwXqur83BKi4MBgiHzCwzRDiGI3GVGzJEVpAABFDqMvich3GAyRT5ibkRnichxEniVGWjNDhTpmhojaAoMh8glPq3E4BkNKuazRyTKJgpmYGapkZoioLTAYIp/wmBlS13eTcVg9UcMSbJkhBkNEbYPBEPmEuYl5hjjhIlHD2E1G1LZ4RSKf8BQMOc5AzcwQUcPs3WQXmBkiahMMhsgnzB5mzo1QO9cMEZFn9mAov4KZIaK2wGCIfMLsMrZeKZdBE6IQ73MkGVHDOsSEAgAqao3Q1XGNMiJfYzBEPuGaGZLLZVBxxmmiZolQK8XV68+V1fq5NUTtH69O5BOuNUMyACHK+mwQ158kalx6bBgAIK+0xs8tIWr/GAyRT3gqoHbMDFkYDRE1Ks3WVXaWmSEin2MwRD5h8hAMOS7MavS0XgcRidJirJkhBkNEvsdgiHzC4tpN5lIvzcmniRqXbssM5ZWxm4zI1xgMkU+4ZoZkkLncJ6LGMDNE1HYYDJFPNFUTxHXJiBqXHmuvGWJmiMjXGAyRT3iqGXLEUIiocR2irZmhyjoTKmo41xCRLzEYIq+zWAS3ofPdkiKc7jMxRNS4UJUC8REqAKwbIvI1BkPkdY4TLr4w9RJc2SsRH0wf5LQPu8mImsa6IaK2oWx6F6KWcZxj6KZB6Zh5eabbPgyFiJqWFhOKvXnlrBsi8jFmhsjrHIMhRQMZICaGiJrGzBBR22AwRF7nOJJM7vIJu+qSJADAvSM6t2WTiAKSfUQZl+Qg8i12k5HXOQ4kk7ukgP5x+wAcztfh0rTotm0UUQBiZoiobTAYIq8THDNDLsGQJkSBgR1j2rpJRAEpPaZ+riFBEDjwgMhH2E1GXuecGfJfO4gCXWq0NRiqNphRxrmGiHyGwRB5nWMBNX/JEl08TYgCiZFqAJyJmsiXGAyR19m7yZgVImq99FjWDRH5GoMh8jp7Ysi1XoiIWi4thiPKiHyNBdTkNXqTGX9fdwK9UiIBAHKmhohazV43lF9R5+eWELVfDIbIaz7+NQfLN50S7zMWImq9+AhrzVBJtcHPLSFqv9hNRl5z+kKV0312kxG1nn2x1uJKvZ9bQtR+MRgir3ENfhgMEbVeXLg9M8RgiMhXGAyR17jGPoyFiFovPtKaGSqpYjcZka8wGCKvcZ1TiJkhotazZ4ZKawxOc3gRkfcwGCKvcS2YZgE1UevFhIVAJgMEASirYXaIyBcYDJHXsGaIyPuUCjliwmxF1FWsGyLyBQZD5DXuNUMMhoi8IS7cPqKMmSEiX2AwRF7jnhnyU0OI2pkYWzBUXstgiMgXGAyR17gmgthNRuQd0aEhAIByrlxP5BMMhshrmBki8o3oMGswVFHLYIjIFxgMkde4xj6sGSLyDm0ogyEiX2IwRF7j1k3GTxeRV0TbRpOVc2g9kU/wckVe49pNpmBmiMgrtKwZIvIpBkPkPSygJvIJ1gwR+RaDIfIa1+CHsRCRd7BmiMi3GAyR17gvx8FoiMgbokPtNUMMhoh8gcEQeY3Z4nyfwRCRd9i7yTjpIpFvMBgirzCZLVi+6ZTTNsZCRN6htQVDdUYL6oxmP7eGqP1hMERecaa0xm0bM0NE3hGpVkJh64fWsW6IyOsYDJFX1Brcf61yniEi75DJZIjSKAEA5QyGiLyOlyvyimq9yW2bxeJhRyK6KPUTLzIYIvI2BkPkFZ6G/B7O1/mhJUTtE4fXE/kOgyHyCn5BE/mWOKKMS3IQeR2DIfIKBkNEvhVj6yYrrWYwRORtDIbIKzjChci3EiPVAICiSr2fW0LU/jAYIq9gZojItxKjNACAQl2dn1tC1P4ETDBUVlaGadOmQavVQqvVYtq0aSgvL2/0mJkzZ0Imkzn9DR06tG0aHGQYDBH5FjNDRL6j9HcDmuuOO+7A2bNn8eOPPwIA7r//fkybNg2rV69u9LiJEydixYoV4n2VSuXTdgYrBkNEvpVkywwVMTNE5HUBEQwdOXIEP/74I7Zv344hQ4YAAD744AMMGzYMx44dQ48ePRo8Vq1WIzk5ua2aGrQYDBH5lj0zVKjTQxAEyDjDO5HXBEQ32bZt26DVasVACACGDh0KrVaLrVu3Nnrsxo0bkZiYiO7du+O+++5DUVFRo/vr9XrodDqnP2oagyEi30qMsgZDtUYzqjxMckpEFy8ggqGCggIkJia6bU9MTERBQUGDx02aNAmff/45fvnlF/ztb3/Dzp07ccUVV0Cvb7jPfcmSJWJdklarRXp6ulfeQ3tXUcsvZyJfClMpEam2JvPPltX6uTVE7Ytfg6EXXnjBrcDZ9W/Xrl0A4DEl3FSq+NZbb8WUKVPQp08fTJ06Ff/73/9w/Phx/PDDDw0eM3/+fFRUVIh/eXl5rX+j7ZwgCBxaT9QG+qdHAwA2Hb/g34YQtTN+rRl6+OGHcdtttzW6T0ZGBvbv34/CwkK3xy5cuICkpKRmv15KSgo6deqEEydONLiPWq2GWq1u9nMSUGe0wGC2LkT2x3NXYeBf1/m5RUTt09ieifj1ZDF2Zpdi1ugu/m4OUbvh12AoPj4e8fHxTe43bNgwVFRUYMeOHRg8eDAA4Pfff0dFRQWGDx/e7NcrKSlBXl4eUlJSLrrN5M5eL6SQyxATFoK4cBVKOEsukdcN7BgNANh2ugTFVXrER/CHG5E3BETNUK9evTBx4kTcd9992L59O7Zv34777rsPV199tdNIsp49e+Kbb74BAFRVVWHevHnYtm0bcnJysHHjRkydOhXx8fG4/vrr/fVW2iV7MBSlUUImk0Eh5ygXIl/onxaN7kkRqDGYse6we7aciC5OQARDAPD555+jb9++GD9+PMaPH49+/frh008/ddrn2LFjqKioAAAoFAocOHAA1157Lbp3744ZM2age/fu2LZtGyIjI/3xFtotezBkX1VbyWCIyCfkchmu7GUtDfj1ZLGfW0PUfgTEPEMAEBsbi88++6zRfQRBEG+HhoZi7dq1vm4WwT0YUigYDBH5ypWXJOHdjafwvwP50NUZEaUJ8XeTiAJewGSGSLrEbjJbMPT81b0BAPeP6uy3NhG1VwM7xiA+Qg2LAOSW1Pi7OUTtQsBkhki6ymusxdLRYdalTq66JAn7FowXM0VE5F0dY0NRXKVHbmkN+nTQ+rs5RAGPmSFqNZ3YTVYfWzMQIvKdTnHhAIBTRVV+bglR+8BgiFrNtWaIiHzLng3ad7bcvw0haicYDFGrMRgialuXpEQBAE4wM0TkFQyGqNUYDBG1rQ7RoQCAgoo6p1G0RHRxGAxRqzEYImpb9hXs9SYLymu4LiBRazEYolZzHVpPRL6lCVEgLtw6ejO7pNrPrSEKfAyGqNUqak0AmBkiakuDM2MBABuPcQV7otZiMEStIgiCw9B6BkNEbSWrUwwAILuYmSGi1mIwRK1SZ7TAYLYAYDBE1JaStRoAQGFFnZ9bQhT4GAxRq9jrhRRyGSLUnNCcqK0kR1mDoXxdrZ9bQhT4GAxRq4jF0xolZDIu0ErUVjrGhgEAzpXVorhK7+fWEAU2BkPUKhxWT+QfiVEaXJISBYsAbDtV4u/mEAU0BkPUKgyGiPynZ3IkACC3lKvXE7UGgyFqFTEYsq1YT0RtJ93WVXa2jMEQUWswGKJWYWaIyH86J1hXr9+bV+HnlhAFNgZD1Cr1wRBHkhG1tVHdEiCTAUfydShhETXRRWMwRK3CCReJ/CcmXIX4COs6Zfmcb4joojEYolZhNxmRf6XYJl9kMER08RgMUauU1xgAMBgi8hf75Ivnyzn5ItHFYjBErcLMEJF/9UyJAgD8drLYzy0hClwMhqhVxBmoGQwR+cXo7gkAgH1ny/3bEKIAxmCIWqWi1gSAmSEif8mIs841VKjTo85o9nNriAITgyHCmz+fwBWvb0RRZcsKMAVB4GgyIj+LDVchTKUAAJwtY90Q0cVgMBTkdp8pxd9/Po7TxdVYtftci46tM1pgMFsAMBgi8heZTCYuy7HtFOuGiC4Gg6Eg9/7m0+Lt2ham2MtrrSPJFHIZItScdJHIX67omQgA2JFT5ueWEAUmBkNBLLu4GmsPFYr3z7ZwsceyamsXWUyYCjKZzKttI6Lm62UbUbZ633mYbNlaImo+BkNBbKtLSv1wvq5Fx9vnGIoJYxcZkT/1sHWTAcBPhwsb2ZOIPGEwFKQMJgue+eYgAOCa/qkAgOOFlajSm8Th8k0ptQdD4Vyxnsif0mLCxGU5Dp9v2Y8aImIwFLQmvblZvD25bwoi1UpYBOCuFTtw2eKfcfBc06tgl1UzM0QkFQ+O6QIA2H66xM8tIQo8DIaC1KkL1eLtCb2TkB5rnatkZ06ZNWv07cEmn6OsxppBimVmiMjvruiZCJkM2HWmDGfLWlb/RxTsGAwFofVH6msKfn1yLGQyGTrZJm6z25dXLmZ+GlJqezw6jMEQkb9lxIejW2IEAOBEYZWfW0MUWBgMBQG9yYxF3x/G77b0+TpbgaVMZq01AIAbB6a5HfdHbuPDdO0F1LEMhogkoastGNrGrjKiFmEwFATe23QaH/6ajVvf3w4AyLOl0Bde20fcZ2zPRLH2p1+aFgDw5c68Rp+31NZNFs2aISJJmNA7GQDww/58P7eEKLBwprx2zmIR8Ma64+L9X08UI9c2n1CPpPrhuAq5DN88eDkuVOkBADcv34Y9ueWNPreYGWLNEJEkDOsSBwA4X1ELg8kClZK/d4mag/9T2rkzLhMpfrItB3mltZDJ6lPqdhnx4bgsIxbdE61BUnGVHrWGhmelttcMcWg9kTQkRKihCZFDEIDv95/3d3OIAgaDoXYuzyUYstcL9U+LbjCjow0LQaTGmjTMbWRW6vKa+hmoicj/ZDKZ+P9x7r/3cRV7omZiMNTOHS+sBACoFM7/1F0SIjztLupu60I7dN7zfEMGkwVVehMAFlATSYljLeBTq/b7sSVEgYPBUDv3zR7rSvR3j8h02h4b3njRc/+0aADAgQYmX7TXC8llELNIROR/I7vFi7e/3XseRZV1fmwNUWBgMNSOCYKA07bJFW8ZlIZUrUZ8bEyPxEaPTY8NBQAU6fQeHxeX4ghTQS7nIq1EUqEJUeDrB4eL94/kV/qxNUSBgcFQO3YkvxK1RjNkMqBDTCjuH9UZgHUU2eVd4xs9NiHSus7RhUrPwZB9xXoOqyeSnoEdY3BpejQA4In/2+ffxhAFAPZvtFOCIOD2D6zzCiVEqKFWKjB9WAYyEyKQ1SmmyePtiz7ah9q7KuOweiJJu6Z/KvbmlaOyzgRBECCTMYNL1BBmhtohi0XAiFc2iKvP35hlnV1aLpdhdPcERKibjoHtmaFCXR0EQXB73B4McSkOImm6Y0hHAECNwYySJpbW+fVEMW5cthX7z5a3QcuIpIfBUDt0pECHc+W14v37R3Zu8XOkxYRCIZehxmBGoYe6Ifu6ZRxJRiRNmhAFkqKsP2r+9tOxBverrDPiTx/9jt1nynDN27+h74K1OFqga6tmEkkCg6F26LGv9oq3n53S66ImRVQrFehkW8n+ZJH7oo/2Fes54SKRdHWzTaD6xY48mC3uGV4AuO+fu5zuV+pNmLh0C257fxv+9tMxFOk4Go3aPwZDAWLLiQsY89oGvLb2qMduKztBEHC2zJoVGpIZi3tchtS3REfbSvbnHbJMdudsr2H/5UlE0vP4hB7i7TUH3NcrO1NSje2nSz0eu/10Kf7xy0k89K8/fNa+9iqvtAbHCjiKL5AwGAoAb6w7jmkf7UBOSQ3e2XAKXzWygOraQwWoMZihlMvw2b1DWlU0mdBIEXVOiXXIfkZ8+EU/PxH5Vo/k+vUHH/lij9sPqef+e0i8/e8HhuGKnu5TbuzMKUMhs0PNVmc0Y9RrG3DN2786lSuQtDEYkjij2YK31p9w2vbU1wcanEhttW216qjQEIQoWvfPG9/A8HqLRUB2sTUYyoxjMEQkVZoQBeaN7y7eP15Y3+V9+LwOm49fAAB0SQjH4MxYfDzzMux9/ir0dAiiAGDIS+sbzUhTvb/8ex8EAdCbLI3+cCVp4dB6ifvbT/UrzoeGKFBrW2to8OL1yHl5itO+X+7IxQ+2YGj+pJ6tfm17Zsg18CrQ1UFvskAplyEtJrTVr0NEvnPzoHS8bvsembB0M27KSsP/7T7rtM+i6/qKt6PDVPhxzigIgoDM+WvE7XvyyjGwYwx25ZTi15PFuH1wRyRFaRAoPt1+Bs99e1C8P7F3MmLCQzC8Szym9k9t8vj1RwrRPSkS6bZayobsyS0Tb3+yNQcDO0Zj5oqdkMmA3c9e1azpSCwWAf/akYtagxkzhmdApWTewtcYDEmYIAj4bPsZANb6ny/vH4puz/wPJlsh5Bc7cnH74I749848POGyBtGwLnGtfv0utlXtd+aUwWIRxJmm3998GgCQHhsGZSuzT0TkW0lRGozunoBNtiyQayA0ODPW4/eFTCbD70+Pw5CX1gMAbnh3K8b2SMCGY9bneXfDKRz968SAmIH+ZFGVUyAEAD8eKgBgLS5/Z8NJ/DhnlMdjBUHAqNc2IK/UucvruasvcavJ3H2mDOcrrD8ew1QKVNQaMXPFTtvzAAP/ug6/PXUFOkQ3/iPyw19P46U1RwEAi9ccwaEXJyC/ohZdEiL8Ol/Uso2n8MqPR5EUpcabtw1AZnw4Jr+5BSXVBjwxsQceHNPVaf/ckhoYzGbUGS14ctV+XJYRixFd4/HWLydwz4hMXHtpBz+9E3cygbnPRul0Omi1WlRUVCAqKqpNX3vNgXw8+Lm1eHHLE2ORHhuGIl0dBtu+nADgsowY7MwpczouSqPE/hcmtPr1DSYL+rywFgaTBZsfHysWVI96dQNyS2swvEsc/nXf0Fa/DhH5Vk5xNca8vtHjYycWT2q0S/2xr/aKaxy6evXGfrjlsnRvNNHrjGYLFnx3CP/6PbdZ+79526UeL86rdp/FX/7jeRbv9X8ZLS56bbEI6Py0NZN2Tf9U9EyJxKs/ep7SIHvJ5AaDmtJqAwb+dZ3HxxIi1dg+fxwULQhAi3R1uPuTnTh4TocXpl6CmZc3b1DNt3vO4cXVh/DqTf1xZa9ETHpzC442URT+7p0DMblvCtYdLnQbpejJ1qeuQGoTgWFrtOT6zWCoCb4Ohn4+XIh7/7kLNwzsgDduuRQGkwUT39wsrikGAOEqBQ6+OEH8z7N80ym8/L+jDT7nvgXjoQ31zjIZ4/62EacuVOPze4fg8q7x+OlQAe7/dDeA+gCNiKTvk605WPBdfcH0yrsuw2UZsQhvYhLW0xeqcMXfNnl8bEyPBKy8a3Cz2/DvXXl44v+sWWylXIZ37xyI+V8fQEm1Aev/Mhqd48MxcekWHCu0XnR3PnMlduWUIj02DH06aAEA58prcfnLv4jPuW3+FSiuNOCW97ZhzpXdMKxLHK55+zePr3951zgsub4ffj5SiIXfH0anuDCcKalx2++nx0ahe5K1birjqR8afU9dEsJxyuH7GgCW3nophneNw+DF1h+uD43tgnc2nGrwOQZ2jMYfueWNvo43jeqegFsGpaF7UiROX6jGrM+s3+lKuQxX90vBt3vPO+0fopDBaPZNqODL6wiDIS/yZTDkmPkBgDdu6Y8f9udj/dEip/0+mD4IV12SJN537cu365kciW8evByhKoXX2njXih3YcOwC+nbQYvUjI3DlG5twsqgKmhA5jv51ktdeh4h873hhJRRymZjNaK53NpzEa2utWY5IjRLTh3USL+77nh8PbTPWKMwursbYBrJTdpFqJSr1pgYfH94lDltPlTS/4Q5StBr8PHe0W/D33qZTWOLhx+Xscd0wJDMWd374OwDgwTFdMKlPCqJClXj8//ZjR7bnKQkAYO/zVyE6TIWjBToo5XJ0TYxAfkUthi35pcFjXCVEqvHunQNx8/JtzT6mLdw3MhMWAfjo1+xmHyOTAZnx4U4/8u0SItXY8fQ4n3T/MRjyIl8FQ4W6OrEvvjE9kyOxZvZIt3753JIajHptAwCgc3w41s0d3aLUaXO9+uNRvLvR+qW3ZvZITH5rCwDg45mDcEXPpMYOJaJ2ZNPxC6jRmzCpb4pTd/3yPw3ExD4pTvuWVhsgQ/2krHmlNRj56oa2bjJGdI3HG7f2R2Jk44XenuouXZ1+abLT9/CT/7cfX+1yHy323rQsTOid7PE5LlTqcdnin5vRcuD3p8c5Fajr6ozo98JPzTrWV167qR9uHmTtFl13uBAWQcCE3skQBAHXvvMb9p+tEPcd2jkWb90+wOO5FwQB0z/egS0nigEAT0/uiftHdfF6exkMeZGvgqGm+lTHX5KERdf3afQ/cZXehDqjGXHhKp8V1ZktArrY+sHjwlXiGkcnF09i8TRRELv/n7vw0+FC9EvT4ruHR4jbNx4rEouG/3XfEPywPx+fO9TtdE4Ix3t/ysJVf9/c4HM/f/UlWPj94QYfVynl2Pz4WAxd4vkH5Q0DO2DRdX0Qpmr+GKEqvQlVdSb8fd1xtyDnmv6peOv2AW7H/HqiGDNW7MDIbvF46fq+UCvliItofCJao9kiLmdkFgR8tCUbH/6ajUXX9cF4Ww9AdJjK4wgys0VAiW3eN7MgQC6TQQbAIlizL+U1Rtz7z53IK63FNf1TMX9yT8ggQ1SoEhqlAiXVBrz8v6NY9cdZt+e+6pIkrDtcKN5/dkov3DMiE6//dAzvbDiFN27pj+sHdGj0WnOhUg9BEBChUTbr3F/z9q9iAOUpqG6tdhkMLV68GD/88AP27t0LlUqF8vLyJo8RBAEvvvgi3n//fZSVlWHIkCF455130Lt372a/rq+Cob+vO44315/ATVlpePXGfmLhHQBM6J2E96YN8tprtdaNy7Zi95n6Iu2ZwzPwwjXNP4dE1P58uOU0Fv1wBABw9K8ToQlRNCt7cXjhBISplNCbzDhZVIVLUqJgMFvQ49kfAQDL/5SFiX2Sca68FqcvVGFAxxhU1BpxNF+H/+w6C73JjLduH4BITQh0dUY88q89SI7SYPH1fXC0oBL5FXUY2yOhVT/WNhwrwl22gA4Aji+a1K6GtxvNFvx+uhQCBMggw8BO0QhTKWE0W3CsoBK9U6PaZNRaSZUeWYusmbJZo7vgKS9MCeOoXQZDCxYsQHR0NM6ePYuPPvqoWcHQK6+8gsWLF2PlypXo3r07Fi1ahM2bN+PYsWOIjIxs8njAd8HQ3rxybDp2AX3TonBFzyScL6/Fzcu3IT5ChX/PGga10nt1P621I7sUt7xX32/9r3uHYHjXeD+2iIj8rdZgRq/nrQFMvzQtHhrbFQ/YBlc05OsHh2NgxxiPj+WW1OBcea1XpgXxhvIaA7afLsH4S5IDYvqAQLX7TBl+O1mMQZ1ivH5daZfBkN3KlSsxZ86cJoMhQRCQmpqKOXPm4MknnwQA6PV6JCUl4ZVXXsEDDzzQrNfz59B6qajWm9B7wVoAwO2DO2LJDX2bOIKIgkFTI63sHhzTBU9M9O6vfqKmtOT63W4nXczOzkZBQQHGjx8vblOr1Rg9ejS2bt3aYDCk1+uh19cvP6HT6XzeVqkLVytxZOFElNcaxFmpiYjevO1SPPrlXrftW54Yi7gIFZ799iC6JERg1mjvF8cSeVP76QR1UVBgnV00Kcl5xFNSUpL4mCdLliyBVqsV/9LTpTmhWFsLVSmQog1l0TQRia69tAMm93UeObXszoFIjw1DmEqJN265FA+N7eqTka5E3uTXzNALL7yAF198sdF9du7ciUGDLr6Y2LUITBCERgvD5s+fj7lz54r3dTodAyIioga8e2eWv5tA1Gp+DYYefvhh3HbbbY3uk5GRcVHPnZxs/bVSUFCAlJT64XpFRUVu2SJHarUaajW7goiIiIKFX4Oh+Ph4xMf7ZlRSZmYmkpOTsW7dOgwYYJ0fwmAwYNOmTXjllVd88ppEREQUeAKmACQ3Nxd79+5Fbm4uzGYz9u7di71796Kqqkrcp2fPnvjmm28AWLvH5syZg5deegnffPMNDh48iJkzZyIsLAx33HGHv94GERERSUzAjCZ7/vnn8cknn4j37dmeDRs2YMyYMQCAY8eOoaKifjrwJ554ArW1tXjwwQfFSRd/+umnZs8xRERERO1fwM0z1NY4zxAREVHgacn1O2C6yYiIiIh8gcEQERERBTUGQ0RERBTUGAwRERFRUGMwREREREGNwRAREREFNQZDREREFNQYDBEREVFQYzBEREREQS1gluPwF/sE3Tqdzs8tISIiouayX7ebs9AGg6EmVFZWAgDS09P93BIiIiJqqcrKSmi12kb34dpkTbBYLDh//jwiIyMhk8m8+tw6nQ7p6enIy8vjumdN4LlqPp6rluH5aj6eq5bh+Wo+X5wrQRBQWVmJ1NRUyOWNVwUxM9QEuVyOtLQ0n75GVFQU/6M0E89V8/FctQzPV/PxXLUMz1fzeftcNZURsmMBNREREQU1BkNEREQU1BgM+ZFarcaCBQugVqv93RTJ47lqPp6rluH5aj6eq5bh+Wo+f58rFlATERFRUGNmiIiIiIIagyEiIiIKagyGiIiIKKgxGCIiIqKgxmDIT959911kZmZCo9EgKysLW7Zs8XeT2tySJUtw2WWXITIyEomJibjuuutw7Ngxp30EQcALL7yA1NRUhIaGYsyYMTh06JDTPnq9Ho888gji4+MRHh6Oa665BmfPnm3Lt9LmlixZAplMhjlz5ojbeK7qnTt3Dn/6058QFxeHsLAwXHrppdi9e7f4OM9VPZPJhGeffRaZmZkIDQ1F586dsXDhQlgsFnGfYD1fmzdvxtSpU5GamgqZTIZvv/3W6XFvnZeysjJMmzYNWq0WWq0W06ZNQ3l5uY/fnfc1dr6MRiOefPJJ9O3bF+Hh4UhNTcX06dNx/vx5p+fw2/kSqM19+eWXQkhIiPDBBx8Ihw8fFh599FEhPDxcOHPmjL+b1qYmTJggrFixQjh48KCwd+9eYcqUKULHjh2FqqoqcZ+XX35ZiIyMFFatWiUcOHBAuPXWW4WUlBRBp9OJ+8yaNUvo0KGDsG7dOuGPP/4Qxo4dK/Tv318wmUz+eFs+t2PHDiEjI0Po16+f8Oijj4rbea6sSktLhU6dOgkzZ84Ufv/9dyE7O1v4+eefhZMnT4r78FzVW7RokRAXFyd8//33QnZ2tvCf//xHiIiIEJYuXSruE6zna82aNcIzzzwjrFq1SgAgfPPNN06Pe+u8TJw4UejTp4+wdetWYevWrUKfPn2Eq6++uq3eptc0dr7Ky8uFK6+8Uvjqq6+Eo0ePCtu2bROGDBkiZGVlOT2Hv84XgyE/GDx4sDBr1iynbT179hSeeuopP7VIGoqKigQAwqZNmwRBEASLxSIkJycLL7/8srhPXV2doNVqheXLlwuCYP0PFhISInz55ZfiPufOnRPkcrnw448/tu0baAOVlZVCt27dhHXr1gmjR48WgyGeq3pPPvmkMGLEiAYf57lyNmXKFOHuu+922nbDDTcIf/rTnwRB4Pmyc724e+u8HD58WAAgbN++Xdxn27ZtAgDh6NGjPn5XvuMpeHS1Y8cOAYCYCPDn+WI3WRszGAzYvXs3xo8f77R9/Pjx2Lp1q59aJQ0VFRUAgNjYWABAdnY2CgoKnM6VWq3G6NGjxXO1e/duGI1Gp31SU1PRp0+fdnk+H3roIUyZMgVXXnml03aeq3rfffcdBg0ahJtvvhmJiYkYMGAAPvjgA/FxnitnI0aMwPr163H8+HEAwL59+/Drr79i8uTJAHi+GuKt87Jt2zZotVoMGTJE3Gfo0KHQarXt9tzZVVRUQCaTITo6GoB/zxcXam1jxcXFMJvNSEpKctqelJSEgoICP7XK/wRBwNy5czFixAj06dMHAMTz4elcnTlzRtxHpVIhJibGbZ/2dj6//PJL/PHHH9i5c6fbYzxX9U6fPo1ly5Zh7ty5ePrpp7Fjxw7Mnj0barUa06dP57ly8eSTT6KiogI9e/aEQqGA2WzG4sWLcfvttwPgZ6sh3jovBQUFSExMdHv+xMTEdnvuAKCurg5PPfUU7rjjDnFhVn+eLwZDfiKTyZzuC4Lgti2YPPzww9i/fz9+/fVXt8cu5ly1t/OZl5eHRx99FD/99BM0Gk2D+/FcARaLBYMGDcJLL70EABgwYAAOHTqEZcuWYfr06eJ+PFdWX331FT777DP861//Qu/evbF3717MmTMHqampmDFjhrgfz5dn3jgvnvZvz+fOaDTitttug8Viwbvvvtvk/m1xvthN1sbi4+OhUCjcItiioiK3XxjB4pFHHsF3332HDRs2IC0tTdyenJwMAI2eq+TkZBgMBpSVlTW4T3uwe/duFBUVISsrC0qlEkqlEps2bcJbb70FpVIpvleeKyAlJQWXXHKJ07ZevXohNzcXAD9Xrh5//HE89dRTuO2229C3b19MmzYNjz32GJYsWQKA56sh3jovycnJKCwsdHv+CxcutMtzZzQaccsttyA7Oxvr1q0Ts0KAf88Xg6E2plKpkJWVhXXr1jltX7duHYYPH+6nVvmHIAh4+OGH8fXXX+OXX35BZmam0+OZmZlITk52OlcGgwGbNm0Sz1VWVhZCQkKc9snPz8fBgwfb1fkcN24cDhw4gL1794p/gwYNwp133om9e/eic+fOPFc2l19+udsUDcePH0enTp0A8HPlqqamBnK586VAoVCIQ+t5vjzz1nkZNmwYKioqsGPHDnGf33//HRUVFe3u3NkDoRMnTuDnn39GXFyc0+N+PV8XXXpNF80+tP6jjz4SDh8+LMyZM0cIDw8XcnJy/N20NvXnP/9Z0Gq1wsaNG4X8/Hzxr6amRtzn5ZdfFrRarfD1118LBw4cEG6//XaPQ1fT0tKEn3/+Wfjjjz+EK664IuCH9DaH42gyQeC5stuxY4egVCqFxYsXCydOnBA+//xzISwsTPjss8/EfXiu6s2YMUPo0KGDOLT+66+/FuLj44UnnnhC3CdYz1dlZaWwZ88eYc+ePQIA4Y033hD27Nkjjn7y1nmZOHGi0K9fP2Hbtm3Ctm3bhL59+wbk0PrGzpfRaBSuueYaIS0tTdi7d6/Td75erxefw1/ni8GQn7zzzjtCp06dBJVKJQwcOFAcTh5MAHj8W7FihbiPxWIRFixYICQnJwtqtVoYNWqUcODAAafnqa2tFR5++GEhNjZWCA0NFa6++mohNze3jd9N23MNhniu6q1evVro06ePoFarhZ49ewrvv/++0+M8V/V0Op3w6KOPCh07dhQ0Go3QuXNn4ZlnnnG6QAXr+dqwYYPH76gZM2YIguC981JSUiLceeedQmRkpBAZGSnceeedQllZWRu9S+9p7HxlZ2c3+J2/YcMG8Tn8db5kgiAIF59XIiIiIgpsrBkiIiKioMZgiIiIiIIagyEiIiIKagyGiIiIKKgxGCIiIqKgxmCIiIiIghqDISIiIgpqDIaIqF3auHEjZDIZysvL/d0UIpI4TrpIRO3CmDFjcOmll2Lp0qUArOtElZaWIikpqd2u/k1E3qH0dwOIiHxBpVKJK4sTETWG3WREFPBmzpyJTZs24c0334RMJoNMJsPKlSuduslWrlyJ6OhofP/99+jRowfCwsJw0003obq6Gp988gkyMjIQExODRx55BGazWXxug8GAJ554Ah06dEB4eDiGDBmCjRs3+ueNEpFPMDNERAHvzTffxPHjx9GnTx8sXLgQAHDo0CG3/WpqavDWW2/hyy+/RGVlJW644QbccMMNiI6Oxpo1a3D69GnceOONGDFiBG699VYAwF133YWcnBx8+eWXSE1NxTfffIOJEyfiwIED6NatW5u+TyLyDQZDRBTwtFotVCoVwsLCxK6xo0ePuu1nNBqxbNkydOnSBQBw00034dNPP0VhYSEiIiJwySWXYOzYsdiwYQNuvfVWnDp1Cl988QXOnj2L1NRUAMC8efPw448/YsWKFXjppZfa7k0Skc8wGCKioBEWFiYGQgCQlJSEjIwMREREOG0rKioCAPzxxx8QBAHdu3d3eh69Xo+4uLi2aTQR+RyDISIKGiEhIU73ZTKZx20WiwUAYLFYoFAosHv3bigUCqf9HAMoIgpsDIaIqF1QqVROhc/eMGDAAJjNZhQVFWHkyJFefW4ikg6OJiOidiEjIwO///47cnJyUFxcLGZ3WqN79+648847MX36dHz99dfIzs7Gzp078corr2DNmjVeaDURSQGDISJqF+bNmweFQoFLLrkECQkJyM3N9crzrlixAtOnT8df/vIX9OjRA9dccw1+//13pKene+X5icj/OAM1ERERBTVmhoiIiCioMRgiIiKioMZgiIiIiIIagyEiIiIKagyGiIiIKKgxGCIiIqKgxmCIiIiIghqDISIiIgpqDIaIiIgoqDEYIiIioqDGYIiIiIiCGoMhIiIiCmr/D2gXrAkBlPhsAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(X_train.iloc[0,0])\n",
"plt.xlabel('time')\n",
"plt.ylabel('a.u.')\n",
"plt.title('example trace')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "5f1297d0-e59b-46ef-bd1c-2c974b7b2fbd",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"X_mean_train = pd.DataFrame(columns=['mean'])\n",
"for i in range(X_train.shape[0]):\n",
" X_mean_train = pd.concat((X_mean_train, \n",
" pd.DataFrame({'mean': X_train.iloc[i,0].mean()}, index=[0])), ignore_index=True)\n",
" \n",
"X_mean_test = pd.DataFrame(columns=['mean'])\n",
"for i in range(X_test.shape[0]):\n",
" X_mean_test = pd.concat((X_mean_test, \n",
" pd.DataFrame({'mean': X_test.iloc[i,0].mean()}, index=[0])), ignore_index=True)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "656566da-5f08-414a-90d5-274ed35f0b73",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(108, 1) (108,)\n",
"['1.0' '10.0' '11.0' '12.0' '2.0' '3.0' '4.0' '5.0' '6.0' '7.0' '8.0'\n",
" '9.0']\n"
]
}
],
"source": [
"print(X_mean_train.shape, y_train.shape)\n",
"\n",
"print(np.unique(y_train))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ad8ea31a-e7af-45a7-b6f0-091b51d82db3",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.08333333333333333\n"
]
}
],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"\n",
"lr = LogisticRegression()\n",
"\n",
"lr.fit(X_mean_train, y_train)\n",
"\n",
"print(lr.score(X_mean_test, y_test))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:code id:349c8bc6-1a18-4fe2-869c-5581df684b1c tags:
```
python
import
numpy
as
np
import
pandas
as
pd
from
sktime.datasets
import
load_from_arff_to_dataframe
import
matplotlib.pyplot
as
plt
```
%% Cell type:code id:47021efb-21dc-4ed2-8375-de1355344a16 tags:
```
python
#dataset = 'FordA'
dataset
=
'
Cricket
'
#dataset = 'Phoneme'
X_train
,
y_train
=
load_from_arff_to_dataframe
(
'
{0}/{0}_TRAIN.arff
'
.
format
(
dataset
))
X_test
,
y_test
=
load_from_arff_to_dataframe
(
'
{0}/{0}_TEST.arff
'
.
format
(
dataset
))
```
%% Cell type:code id:ea059511-2df8-447e-a064-ab23a2d4b6f5 tags:
```
python
plt
.
figure
()
plt
.
plot
(
X_train
.
iloc
[
0
,
0
])
plt
.
xlabel
(
'
time
'
)
plt
.
ylabel
(
'
a.u.
'
)
plt
.
title
(
'
example trace
'
)
plt
.
show
()
```
%% Output
%% Cell type:code id:5f1297d0-e59b-46ef-bd1c-2c974b7b2fbd tags:
```
python
X_mean_train
=
pd
.
DataFrame
(
columns
=
[
'
mean
'
])
for
i
in
range
(
X_train
.
shape
[
0
]):
X_mean_train
=
pd
.
concat
((
X_mean_train
,
pd
.
DataFrame
({
'
mean
'
:
X_train
.
iloc
[
i
,
0
].
mean
()},
index
=
[
0
])),
ignore_index
=
True
)
X_mean_test
=
pd
.
DataFrame
(
columns
=
[
'
mean
'
])
for
i
in
range
(
X_test
.
shape
[
0
]):
X_mean_test
=
pd
.
concat
((
X_mean_test
,
pd
.
DataFrame
({
'
mean
'
:
X_test
.
iloc
[
i
,
0
].
mean
()},
index
=
[
0
])),
ignore_index
=
True
)
```
%% Cell type:code id:656566da-5f08-414a-90d5-274ed35f0b73 tags:
```
python
print
(
X_mean_train
.
shape
,
y_train
.
shape
)
print
(
np
.
unique
(
y_train
))
```
%% Output
(108, 1) (108,)
['1.0' '10.0' '11.0' '12.0' '2.0' '3.0' '4.0' '5.0' '6.0' '7.0' '8.0'
'9.0']
%% Cell type:code id:ad8ea31a-e7af-45a7-b6f0-091b51d82db3 tags:
```
python
from
sklearn.linear_model
import
LogisticRegression
lr
=
LogisticRegression
()
lr
.
fit
(
X_mean_train
,
y_train
)
print
(
lr
.
score
(
X_mean_test
,
y_test
))
```
%% Output
0.08333333333333333
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment