Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
TP-IA-Syntax-Error
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
VIGEOLAS-CHOURY Paul
TP-IA-Syntax-Error
Commits
1038f423
Commit
1038f423
authored
4 months ago
by
paul_pvc
Browse files
Options
Downloads
Patches
Plain Diff
added Gabor Filter with mean and variance, update soon
parent
2bcaecc8
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
Main.py
+26
-5
26 additions, 5 deletions
Main.py
TP.py
+28
-5
28 additions, 5 deletions
TP.py
with
54 additions
and
10 deletions
Main.py
+
26
−
5
View file @
1038f423
from
sklearn.naive_bayes
import
GaussianNB
from
sklearn.neighbors
import
KNeighborsClassifier
from
sklearn.svm
import
SVC
from
sklearn.ensemble
import
RandomForestClassifier
from
sklearn.model_selection
import
GridSearchCV
from
sklearn.neural_network
import
MLPClassifier
from
xgboost
import
XGBClassifier
...
...
@@ -10,12 +12,31 @@ import TP
path1_t
=
"
./Init/Mer
"
path2_t
=
"
./Init/Ailleurs
"
"""
S = TP.buildSampleFromPath(path1_t, path2_t)
classifier, S_test, y_test, S_train, y_train = TP.fitFromHisto(S, SVC())
TP.predictFromHisto(S, classifier)
"""
"""
print()
print(
"
Erreur empirique щ(ºДºщ):
"
, TP.computeError(S_train),
"
erreurs
"
)
print(
"
Erreur réelle ( ͡° _ʖ ͡°):
"
, TP.computeError(S_test),
"
erreurs
"
)
print(
"
Taux de réussite (╯°□°)╯︵ ┻━┻ :
"
, TP.computeScore(S_test),
"
%
"
)
"""
svc_params
=
{
"
kernel
"
:
(
'
linear
'
,
'
rbf
'
),
"
C
"
:
[
1
,
10
]}
xgb_params
=
{
"
n_estimators
"
:
[
1
,
10
],
"
max_depth
"
:
[
0
,
10
],
"
max_leaves
"
:
[
0
,
10
],
"
grow_policy
"
:
(
"
depthwise
"
,
"
lossguide
"
),
"
learning_rate
"
:
[
0.01
,
0.2
],
"
booster
"
:(
"
gbtree
"
,
"
gblinear
"
,
"
dart
"
)}
rand_forest_params
=
{
"
n_estimators
"
:
[
100
,
200
],
"
criterion
"
:
(
"
gini
"
,
"
entropy
"
,
"
log_loss
"
)}
knn_params
=
{
"
n_neighbors
"
:
[
1
,
10
],
"
weights
"
:
(
"
uniform
"
,
'
distance
'
),
"
algorithm
"
:
(
"
auto
"
,
"
ball_tree
"
,
"
kd_tree
"
,
"
brute
"
),
"
leaf_size
"
:
[
15
,
45
],
"
p
"
:
[
1.
,
3.
]}
result
=
GridSearchCV
(
SVC
(),
svc_params
)
S
=
TP
.
buildSampleFromPath
(
path1_t
,
path2_t
)
classifier
,
S_test
,
y_test
,
S_train
,
y_train
=
TP
.
fitFromHisto
(
S
,
XGBClassifier
())
TP
.
predictFromHisto
(
S
,
classifier
)
print
()
#classifier, S_test, y_test, S_train, y_train = TP.fitFromHisto(S, result)
"""
TP.predictFromHisto(S, classifier)
print(
"
Erreur empirique щ(ºДºщ):
"
, TP.computeError(S_train),
"
erreurs
"
)
print(
"
Erreur réelle ( ͡° _ʖ ͡°):
"
, TP.computeError(S_test),
"
erreurs
"
)
print
(
"
Taux de réussite (╯°□°)╯︵ ┻━┻ :
"
,
TP
.
computeScore
(
S_test
),
"
%
"
)
print
(
TP
.
get_cross_val_score
(
classifier
,
S_train
,
S_test
,
y_train
,
y_test
))
print(
"
Taux de réussite (╯°□°)╯︵ ┻━┻ :
"
, TP.computeScore(S_test),
"
%
"
)
"""
print
(
"
Taux de réussite en cross validation SVC:
"
,
TP
.
get_cross_val_score
(
result
,
S
),
"
%
"
)
#print("Taux de réussite en cross validation XGBOOST: ", TP.get_cross_val_score(XGBClassifier(), S_train, S_test, y_train, y_test), "%")
#print("Taux de réussite en cross validation randomForest: ", TP.get_cross_val_score(GridSearchCV(RandomForestClassifier(), rand_forest_params), S_train, S_test, y_train, y_test), "%")
#print("Taux de réussite en cross validation KNeighbors: ", TP.get_cross_val_score(GridSearchCV(KNeighborsClassifier(), knn_params), S_train, S_test, y_train, y_test), "%")
#TP.computePredictionFile(classifier, TP.fetch_images_to_dict("./Init/Data CC2"))
\ No newline at end of file
This diff is collapsed.
Click to expand it.
TP.py
+
28
−
5
View file @
1038f423
...
...
@@ -7,6 +7,7 @@ from sklearn.metrics import accuracy_score
from
sklearn.model_selection
import
train_test_split
from
skimage.feature
import
graycomatrix
,
graycoprops
from
sklearn.model_selection
import
cross_val_score
from
skimage.filters
import
gabor
import
math
from
sklearn.naive_bayes
import
GaussianNB
...
...
@@ -66,7 +67,7 @@ def compute_glcm_caracteristics(image_gl):
"""
image_arr
=
np
.
array
(
image_gl
)
#print(image_arr.shape)
glcm
=
graycomatrix
(
image_arr
,
distances
=
[
1
],
angles
=
[
0
],
levels
=
256
,
glcm
=
graycomatrix
(
image_arr
,
distances
=
[
1
0
],
angles
=
[
3
],
levels
=
256
,
symmetric
=
True
,
normed
=
True
)
return
[
graycoprops
(
glcm
,
'
dissimilarity
'
)[
0
,
0
],
graycoprops
(
glcm
,
'
correlation
'
)[
0
,
0
],
graycoprops
(
glcm
,
'
contrast
'
)[
0
,
0
],
graycoprops
(
glcm
,
'
energy
'
)[
0
,
0
],
graycoprops
(
glcm
,
'
homogeneity
'
)[
0
,
0
]]
...
...
@@ -126,6 +127,7 @@ def computeDict(image_path, path, y_true_value, max_size: tuple):
"
X_glcm_data
"
:
compute_glcm_caracteristics
(
image_gl
),
#"X_splitted_histo": compute_4_histos(resized),
#"X_splitted_glcm": compute_4_glcm(image_gl),
"
gabor_features
"
:
get_gabor_filters
(
image_gl
),
"
y_true_class
"
:
y_true_value
,
"
y_predicted_class
"
:
None
}
...
...
@@ -149,9 +151,25 @@ def computeHisto(image: PIL.Image.Image):
"""
return
image
.
histogram
()
def
get_gabor_filters
(
image
):
image_arr
=
np
.
asarray
(
image
)
#print(image_arr.shape, image_arr)
#frequencies = [0.2]
thetas
=
[
0
,
np
.
pi
/
2
]
features
=
[]
for
theta
in
thetas
:
filt_real
,
filt_imag
=
gabor
(
image_arr
,
frequency
=
0.2
,
theta
=
theta
)
features
.
append
(
filt_real
.
mean
())
# Moyenne du filtre réel
features
.
append
(
filt_real
.
var
())
# Variance du filtre réel
features
.
append
(
filt_imag
.
mean
())
# Moyenne du filtre imaginaire
features
.
append
(
filt_imag
.
var
())
# Variance du filtre imaginaire
return
np
.
array
(
features
).
tolist
()
def
extract_relevant_data
(
l
:
dict
)
->
list
:
return
l
[
"
X_histo
"
]
+
l
[
"
X_glcm_data
"
]
return
l
[
"
X_histo
"
]
+
l
[
"
gabor_features
"
]
+
l
[
"
X_glcm_data
"
]
#78% l["X_histo"] + l["X_glcm_data"]
def
fitFromHisto
(
S
,
algo
):
...
...
@@ -254,10 +272,15 @@ def computePredictionFile(classifier, images_test=None):
file
.
close
()
def
get_cross_val_score
(
classifier
,
S_train
,
S_test
,
y_train
,
y_test
):
def
get_cross_val_score
(
classifier
,
S
):
df
=
pd
.
DataFrame
(
S
)
y
=
np
.
array
(
df
[
"
y_true_class
"
])
S_train
,
S_test
,
y_train
,
y_test
=
train_test_split
(
S
,
y
,
test_size
=
0.2
)
X_train
=
np
.
array
([
np
.
array
(
extract_relevant_data
(
l
))
for
l
in
S_train
])
X_test
=
np
.
array
([
np
.
array
(
extract_relevant_data
(
l
))
for
l
in
S_test
])
X
=
np
.
concatenate
([
X_train
,
X_test
])
y
=
np
.
concatenate
([
y_train
,
y_test
])
scores
=
cross_val_score
(
classifier
,
X
,
y
,
cv
=
20
)
return
np
.
mean
(
scores
)
\ No newline at end of file
scores
=
cross_val_score
(
classifier
,
X
,
y
,
cv
=
10
)
return
np
.
mean
(
scores
)
*
100
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment