Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • ImprovedMouseInteraction
  • correction_video
  • going_further
  • main
  • ModifGUI
  • final2023
  • template
7 results

Target

Select target project
  • s20026898/tp-6
  • boukenze.b/jeu-de-la-vie-tp-3
  • b22015696/game-of-life-template
  • s23026062/sahin-game-of-life-template
  • m22023183/game-of-life-MALEK
  • z23012739/game-of-life-template
  • p23021107/poussardin-malo-game-of-life-template
  • o21225801/game-of-life-template
  • alaboure/game-fo-life-template
  • t22007439/game-of-life-toullec
  • b23021750/game-of-life
  • c22029830/game-of-life-template-rafi
  • b23025683/game-of-life-template-tp-6
  • gnaves/game-of-life-template
  • a22025223/game-of-life-template-cristel
  • f22024692/game-of-life-template-paolo-mathis-erwan
  • t21233923/game-fo-life-template
  • h21231335/game-fo-life-template
  • l22023519/game-of-life-template-salma
  • p23020787/game-of-life-template
  • b21232450/game-of-life-template
  • s22031458/game-of-life
  • n21223697/tp-4-ngom
  • a22027291/game-of-life-of-salim
  • k22029508/tp-4
  • s19033421/game-of-life-template
  • b21229750/jeu-de-la-vie-tp-3
  • saddem.r/game-of-life-template
  • l3_s3_infoamu/s3/programmation-2/game-fo-life-template
29 results
Select Git revision
  • ImprovedMouseInteraction
  • correction_video
  • going_further
  • main
  • ModifGUI
  • final2023
  • template
7 results
Show changes
Commits on Source (13)
Showing
with 787 additions and 378 deletions
......@@ -2,16 +2,20 @@
## Description du projet
Le [jeu de la vie](https://fr.wikipedia.org/wiki/Jeu_de_la_vie) n’est pas vraiment un jeu, puisqu'il ne nécessite aucun joueur.
Le [jeu de la vie](https://fr.wikipedia.org/wiki/Jeu_de_la_vie) est une implémentation d'un
modèle de calcul : les automates cellulaires.
Le jeu se déroule sur une grille à deux dimensions dont les cases qu’on appelle des cellules peuvent prendre deux états distincts : vivantes ou mortes.
Le modèle se présente sous la forme d'une grille à deux dimensions dont les cases, qu’on
appelle des cellules, peuvent prendre deux états distincts : vivantes ou mortes.
À chaque étape, l’évolution d’une cellule est entièrement déterminée par l’état de ses huit voisines de la façon suivante :
À chaque étape, de calcul, l'état de chaque cellule est recalculé. Le nouvel état d'une cellule
est entièrement déterminée par l’état de ses huit voisines de la façon suivante :
- Une cellule morte possédant exactement trois voisines vivantes devient vivante (elle naît).
- Une cellule vivante possédant deux ou trois voisines vivantes le reste, sinon elle meurt.
- Une cellule morte possédant exactement trois voisines vivantes devient vivante.
- Une cellule vivante possédant deux ou trois voisines vivantes le reste, sinon elle devient morte.
Le but de ce TP est de compléter le code fourni par le dépôt afin d'obtenir un simulateur de jeu de la vie.
Le but de ce TP est de compléter le programme fourni par le dépôt afin d'obtenir un simulateur de
jeu de la vie.
## Membre du projet
......
......@@ -4,7 +4,7 @@ plugins {
}
javafx {
version = "20"
version = "22"
modules = [ 'javafx.controls', 'javafx.fxml' ]
}
......@@ -23,5 +23,5 @@ test {
}
application {
mainClassName = "GameOfLifeApplication"
mainClassName = "SimulatorApplication"
}
\ No newline at end of file
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-8.3-bin.zip
distributionUrl=https\://services.gradle.org/distributions/gradle-8.8-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
import controller.Controller;
import controller.Simulation;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;
import model.GameOfLife;
import model.Grid;
import model.CellularAutomatonSimulation;
import model.automata.GameOfLifeAutomaton;
import java.io.IOException;
import java.net.URL;
import static java.util.Objects.requireNonNull;
import java.util.Random;
/**
* Entry point for <i>The Game of Life</i> application.
*
*/
public class GameOfLifeApplication extends Application {
public class SimulatorApplication extends Application {
public static final int NUMBER_OF_ROWS = 40;
public static final int NUMBER_OF_COLUMNS = 70;
private static final int NUMBER_OF_ROWS = 40;
private static final int NUMBER_OF_COLUMNS = 70;
public static final Random GENERATOR = new Random();
private static final String APP_NAME = "Game of Life";
private static final String APP_NAME = "2D Cellular automata";
private static final String VIEW_RESOURCE_PATH = "/view/view.fxml";
private final GameOfLife gameOfLife;
private final Simulation simulation;
private Stage primaryStage;
private Parent view;
/**
* Creates a new {@code GameOfLifeApplication} instance.
*/
public GameOfLifeApplication() {
this(new GameOfLife(new Grid(NUMBER_OF_ROWS, NUMBER_OF_COLUMNS)));
public SimulatorApplication() {
this.simulation =
new CellularAutomatonSimulation<>(
new GameOfLifeAutomaton(NUMBER_OF_COLUMNS,NUMBER_OF_ROWS),
GENERATOR
);
}
/**
* Creates a new {@code GameOfLifeApplication} instance given a {@link GameOfLife} instance.
*
* @param gameOfLife the {@link GameOfLife} instance
* @throws NullPointerException if {@code gameOfLife} is {@code null}
*/
private GameOfLifeApplication(GameOfLife gameOfLife) {
this.gameOfLife = requireNonNull(gameOfLife, "game of life is null");
}
@Override
public void start(Stage primaryStage) throws IOException {
......@@ -63,11 +60,11 @@ public class GameOfLifeApplication extends Application {
private void initializeView() throws IOException {
FXMLLoader loader = new FXMLLoader();
URL location = GameOfLifeApplication.class.getResource(VIEW_RESOURCE_PATH);
URL location = SimulatorApplication.class.getResource(VIEW_RESOURCE_PATH);
loader.setLocation(location);
view = loader.load();
Controller controller = loader.getController();
controller.setGameOfLife(gameOfLife);
controller.setSimulation(simulation);
}
......
package controller;
import matrix.Coordinate;
import javafx.animation.Animation;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.fxml.FXML;
import javafx.scene.control.Label;
import javafx.scene.control.ToggleButton;
import javafx.scene.control.ToggleGroup;
import model.GameOfLife;
import model.Grid;
import javafx.util.Duration;
import view.MatrixPane;
import static java.util.Objects.requireNonNull;
......@@ -15,6 +20,7 @@ import static java.util.Objects.requireNonNull;
*/
public class Controller {
public static final int PERIOD_IN_MILLISECONDS = 100;
@FXML
private ToggleButton playToggleButton;
@FXML
......@@ -23,12 +29,18 @@ public class Controller {
private Label generationNumberLabel;
@FXML
private MatrixPane matrixPane;
private Timeline timeline;
private GameOfLife gameOfLife;
public Simulation getSimulation() {
return simulation;
}
private Simulation simulation;
@FXML
private void initialize() {
initializePlayAndPauseToggleButtons();
updateTimeline();
}
private void initializePlayAndPauseToggleButtons() {
......@@ -38,47 +50,77 @@ public class Controller {
}
/**
* Sets {@link GameOfLife} instance.
*
* @param gameOfLife {@link GameOfLife} instance
* @throws NullPointerException if {@code gameOfLife} is {@code null}
*/
public void setGameOfLife(GameOfLife gameOfLife) {
this.gameOfLife = requireNonNull(gameOfLife, "game of life is null");
public void setSimulation(Simulation simulation) {
this.simulation = requireNonNull(simulation, "game of life is null");
setGenerationNumberLabelTextProperty();
initializeMatrixPane();
}
private void setGenerationNumberLabelTextProperty() {
generationNumberLabel.textProperty().bind(gameOfLife.generationNumberProperty().asString());
updateGenerationNumber(0);
this.simulation.setGenerationNumberChangeListener(
(oldValue, newValue) -> updateGenerationNumber(newValue)
);
}
private void updateGenerationNumber(int newValue) {
generationNumberLabel.textProperty().set(String.valueOf(newValue));
}
private void initializeMatrixPane() {
Grid grid = gameOfLife.getGrid();
matrixPane.initialize(grid);
matrixPane.initialize(this);
}
@FXML
private void playToggleButtonAction() {
gameOfLife.play();
this.play();
}
@FXML
private void pauseToggleButtonAction() {
gameOfLife.pause();
this.pause();
}
@FXML
private void resetButtonAction() {
gameOfLife.reset();
this.pause();
simulation.reset();
pauseToggleButton.setSelected(true);
}
@FXML
private void clearButtonAction() {
gameOfLife.clear();
this.pause();
simulation.clear();
pauseToggleButton.setSelected(true);
}
public Iterable<Coordinate> coordinates() {
return simulation;
}
private void updateTimeline() {
Duration duration = new Duration(Controller.PERIOD_IN_MILLISECONDS);
EventHandler<ActionEvent> eventHandler =
event -> simulation.updateToNextGeneration();
KeyFrame keyFrame = new KeyFrame(duration, eventHandler);
timeline = new Timeline(keyFrame);
timeline.setCycleCount(Animation.INDEFINITE);
}
/**
* Plays the game.
*/
public void play() {
timeline.play();
}
/**
* Pauses the game.
*/
public void pause() {
timeline.pause();
}
}
package controller;
import matrix.Coordinate;
import javafx.scene.paint.Color;
import model.OnChangeListener;
/**
* Represents a simulation of a 2D cellular automaton, such as the Game of Life.
* Provides methods for updating the simulation, retrieving information, and managing listeners.
*/
public interface Simulation extends Iterable<Coordinate> {
/**
* Returns the number of columns in the simulation grid.
*
* @return The number of columns in the grid.
*/
int numberOfColumns();
/**
* Returns the number of rows in the simulation grid.
*
* @return The number of rows in the grid.
*/
int numberOfRows();
/**
* Updates the simulation to the next generation. This is done by computing, for each
* coordinate, a new state that depends on the states of its neighbours.
*/
void updateToNextGeneration();
/**
* Changes the state at a given {@link Coordinate}. This is used to edit the grid with the mouse. It
* is not part of the simulation of the cellular automaton.
*
* @param coordinate The {@link Coordinate} to advance to the next state.
*/
void next(Coordinate coordinate);
/**
* Copies the state from the source {@link Coordinate} to the destination {@link Coordinate}.
*
* @param source The source {@link Coordinate}.
* @param destination The destination {@link Coordinate}.
*/
void copy(Coordinate source, Coordinate destination);
/**
* Gets the {@link Color} associated with the state at the specified {@link Coordinate}.
*
* @param coordinate The {@link Coordinate} to retrieve the color for.
* @return The {@link Color} associated with the state at the specified {@link Coordinate}.
*/
Color getColor(Coordinate coordinate);
/**
* Sets a listener to be executed when the state at the specified {@link Coordinate} changes.
*
* @param coordinate The {@link Coordinate} to listen for changes.
* @param listener The listener to execute when the state changes.
*/
void setChangeListener(Coordinate coordinate, Runnable listener);
/**
* Sets a listener to be executed when the generation number changes.
*
* @param listener The listener to execute when the generation number changes.
*/
void setGenerationNumberChangeListener(OnChangeListener<Integer> listener);
/**
* Resets the simulation to random states.
*/
void reset();
/**
* Clears the simulation, setting all states to their default values.
*/
void clear();
}
package matrix;
public class ConstantMatrixInitializer<T> implements MatrixInitializer<T> {
// TODO: add instance variables
public ConstantMatrixInitializer(T constant) {
// TODO
}
@Override
public T initialValueAt(Coordinate coordinate) {
// TODO
return null;
}
}
package matrix;
import java.util.List;
/**
* Represents a 2D integer coordinate used to specify positions in a grid.
*/
public record Coordinate(int x, int y) {
/**
* Creates a new {@link Coordinate} instance with the given {@code x} and {@code y} values.
*
* @param x The x-coordinate value.
* @param y The y-coordinate value.
* @return A new {@link Coordinate} instance.
*/
public static Coordinate of(int x, int y) {
// TODO: compléter ce fabriquant
return null;
}
/**
* Computes and returns the {@link Coordinate} to the left of this one.
*
* @return The left adjacent {@link Coordinate}.
*/
public Coordinate left() {
// TODO: à compléter
return null;
}
/**
* Computes and returns the {@link Coordinate} to the right of this one.
*
* @return The right adjacent {@link Coordinate}.
*/
public Coordinate right() {
// TODO: à compléter
return null;
}
/**
* Computes and returns the {@link Coordinate} above this one.
*
* @return The above adjacent {@link Coordinate}.
*/
public Coordinate above() {
// TODO: à compléter
return null;
}
/**
* Computes and returns the {@link Coordinate} below this one.
*
* @return The below adjacent {@link Coordinate}.
*/
public Coordinate below() {
// TODO: à compléter
return null;
}
/**
* Computes and returns a list of orthogonal (adjacent in horizontal or vertical direction) neighbors.
* | | | |
* ---------
* | |X| |
* ---------
* |X|O|X|
* ---------
* | |X| |
* ---------
* | | | |
* @return A list of orthogonal neighboring {@link Coordinate}s.
*/
public List<Coordinate> orthogonalNeighbours() {
// TODO: à compléter
return List.of();
}
/**
* Computes and returns a list of diagonal (adjacent in diagonal direction) neighbors.
* | | | |
* ---------
* |X| |X|
* ---------
* | |O| |
* ---------
* |X| |X|
* ---------
* | | | |
*
* @return A list of diagonal neighboring {@link Coordinate}s.
*/
public List<Coordinate> diagonalNeighbours() {
// TODO: à compléter
return List.of();
}
/**
* Computes and returns a list of all orthogonal and diagonal neighbors.
* * | | | |
* * ---------
* * |X|X|X|
* * ---------
* * |X|O|X|
* * ---------
* * |X|X|X|
* * ---------
* * | | | |
*
* @return A list of all neighboring {@link Coordinate}s.
*/
public List<Coordinate> orthodiagonalNeighbours() {
// TODO: à compléter
return List.of();
}
@Override
public String toString() {
return "(" + this.x + "," + this.y + ")";
}
public Coordinate minus(Coordinate corner) {
return new Coordinate(this.x - corner.x, this.y - corner.y);
}
public Coordinate plus(Coordinate corner) {
return new Coordinate(this.x + corner.x, this.y + corner.y);
}
}
\ No newline at end of file
package matrix;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* An {@link Iterator} for generating 2D {@link Coordinate}s within a specified width and
* height range.
*/
class CoordinateIterator implements Iterator<Coordinate> {
/**
* Creates a new {@link CoordinateIterator} with the specified width and height.
*
* @param width The width of the coordinate range.
* @param height The height of the coordinate range.
*/
public CoordinateIterator(int width, int height) {
// TODO: à compléter
}
/**
* Checks if there are more {@link Coordinate}s to iterate over.
*
* @return true if there are more {@link Coordinate}s; otherwise, false.
*/
@Override
public boolean hasNext() {
// TODO: à compléter
return false;
}
/**
* Returns the next {@link Coordinate} in the iteration.
*
* @return The next {@link Coordinate} in the iteration.
* @throws NoSuchElementException if there are no more {@link Coordinate}s to iterate over.
*/
@Override
public Coordinate next() {
// TODO: à compléter
return null;
}
}
package matrix;
import java.util.List;
/**
* Represents a matrix, a rectangular array, with generic values in each cell.
*
* @param <T> The type of values stored in the matrix cells.
*/
public class ListMatrix<T> implements Matrix<T> {
private final List<List<T>> matrix;
private final int width;
private final int height;
/**
* Creates a new {@link ListMatrix} with the specified width, height, and an initializer to set
* values.
*
* @param width The width of the {@link ListMatrix}.
* @param height The height of the {@link ListMatrix}.
* @param initializer A matrix initializer to set values in the {@link ListMatrix}.
*/
public ListMatrix(int width, int height, MatrixInitializer<T> initializer) {
// TODO
this.width = 0;
this.height = 0;
this.matrix = null;
this.initializeWith(initializer); // fills the matrix using initializer
}
public ListMatrix(int width, int height, T constant) {
this(width, height, new ConstantMatrixInitializer<>(constant));
}
private void initializeWith(MatrixInitializer<T> initializer) {
// TODO initialize each cell of the matrix, with a value determined by initializer
}
public int width() {
// TODO
return 0;
}
public int height() {
// TODO
return 0;
}
@Override
public T get(int x, int y) {
// TODO
return null;
}
@Override
public void set(int x, int y, T newValue) {
// TODO
}
}
package matrix;
import java.util.Iterator;
public interface Matrix<T> extends Iterable<T> {
/**
* Returns the width of the {@link Matrix}.
*
* @return The width of the {@link Matrix}.
*/
int width();
/**
* Returns the height of the {@link Matrix}.
*
* @return The height of the {@link Matrix}.
*/
int height();
/**
* Returns the value at the specified coordinates (x, y) in
* the {@link Matrix}.
*
* @param x The x-coordinate.
* @param y The y-coordinate.
* @return The content of the matrix at the coordinates (x,y).
*/
T get(int x, int y);
/**
* Returns the value at the specified coordinates (x, y) in
* the {@link Matrix}.
*
* @param coordinate The coordinates (x,y).
* @return The content of the matrix at the coordinates (x,y).
*/
default T get(Coordinate coordinate) {
return this.get(coordinate.x(), coordinate.y());
}
/**
* Changes the value at the specified coordinates (x,y) in the {@link Matrix}
*
* @param x the x-coordinate
* @param y the y-coordinate
* @param newValue the value to assign to coordinates (x,y).
*/
void set(int x, int y, T newValue);
/**
* Changes the value at the specified coordinates (x,y) in the {@link Matrix}
*
* @param coordinate The coordinates (x,y)
* @param newValue the value to assign to coordinates (x,y).
*/
default void set(Coordinate coordinate, T newValue) {
this.set(coordinate.x(), coordinate.y(), newValue);
}
default Matrix<T> subMatrix(Coordinate corner, int width, int height){
return null ;
}
/**
* Returns an {@link Iterable} that provides access to the {@link Coordinate}s of the
* {@link Matrix} in row-major order. This means that a {@code for} loop on a {@link Matrix}
* will loop over the coordinates of the {@link Matrix}.
*
* @return An {@link Iterable} for the {@link Coordinate}s of the {@link Matrix}.
*/
default Iterable<Coordinate> coordinates() {
return () -> new CoordinateIterator(this.width(), this.height());
}
/**
* Returns an {@link Iterator} that allows iterating over the elements in the {@link Matrix} in
* row-major order.
*
* @return An {@link Iterator} for the {@link Matrix}.
*/
default Iterator<T> iterator() {
Iterator<Coordinate> coords =
new CoordinateIterator(this.width(),this.height());
return new MatrixIterator<>(this, coords);
}
}
package matrix;
/**
* An interface for initializing a {@link ListMatrix} by providing initial values for each cell.
*
* @param <T> The type of values to initialize the {@link ListMatrix} with.
*/
public interface MatrixInitializer<T> {
/**
* Returns the initial value to be set in a {@link ListMatrix} cell at the specified
* {@link Coordinate}.
*
* @param coordinate The {@link Coordinate} at which to set the initial value.
* @return The initial value for the specified cell.
*/
T initialValueAt(Coordinate coordinate);
}
package matrix;
import java.util.Iterator;
import java.util.NoSuchElementException;
class MatrixIterator<T> implements Iterator<T> {
private final Iterator<Coordinate> coordIterator;
private final Matrix<T> matrix;
public MatrixIterator(Matrix<T> matrix, Iterator<Coordinate> coordIterator) {
this.coordIterator = coordIterator;
this.matrix = matrix;
}
@Override
public boolean hasNext() {
return coordIterator.hasNext();
}
@Override
public T next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
return matrix.get(coordIterator.next());
}
}
package model;
import javafx.beans.property.Property;
import javafx.beans.property.SimpleObjectProperty;
import java.util.ArrayList;
import java.util.List;
/**
* {@link Cell} instances represent the cells of <i>The Game of Life</i>.
*/
public class Cell {
private final Property<CellState> stateProperty = new SimpleObjectProperty<>(CellState.DEAD);
/**
* Determines whether this {@link Cell} is alive or not.
* A class representing a cell that holds a value and allows adding listeners to track value changes.
*
* @return {@code true} if this {@link Cell} is alive and {@code false} otherwise
* @param <T> The type of value stored in the cell.
*/
public class Cell<T> implements Lens<T> {
public boolean isAlive() {
return getState().isAlive;
}
//TODO: ajouter la ou les propriétés nécessaires
/**
* Sets the state of this {@link Cell}.
// la liste des objets écoutant les modifications du contenu de la cellule
private final List<OnChangeListener<T>> listeners = new ArrayList<>();
/** Initialize a new cell with a given value.
*
* @param cellState the new state of this {@link Cell}
* @param initialContent the value initially stored by the cell.
*/
public void setState(CellState cellState) {
getStateProperty().setValue(cellState);
public Cell(T initialContent) {
//TODO: à compléter
}
/**
* Returns the current state of this {@link Cell}.
/** Add a {@link OnChangeListener} to react to any change of value in the cell.
*
* @return the current state of this {@link Cell}
* @param listener the {@link OnChangeListener} to activate when the value in the cell is
* changed.
*/
public CellState getState(){
return getStateProperty().getValue();
public void addOnChangeListener(OnChangeListener<T> listener) {
this.listeners.add(listener);
}
/**
* Change the state of this {@link Cell} from ALIVE to DEAD or from DEAD to ALIVE.
* Sets the content of this {@link Cell}. This will also call all the listeners that were
* registered by the method {@code addOnChangeListener}.
*
* @param value the new content of this {@link Cell}
*/
public void toggleState() {
CellState[] possibleStates = CellState.values();
int stateOrdinal = getState().ordinal();
int numberOfPossibleStates = possibleStates.length;
setState(possibleStates[(stateOrdinal+1)%numberOfPossibleStates]);
public void set(T value) {
//TODO: modifier le contenu de la cellule, puis appeler les méthodes valueChanged des
// listeners
}
/**
* Returns this {@link Cell}'s state property.
* Returns the current content of this {@link Cell}.
*
* @return this {@link Cell}'s state property.
* @return the current content of this {@link Cell}
*/
public Property<CellState> getStateProperty() {
return stateProperty;
public T get(){
//TODO: à compléter
return null;
}
}
package model;
import javafx.scene.paint.Color;
/**
* {@link CellState} instances represent the possible states of a {@link CellState}.
*/
public enum CellState {
ALIVE(true, Color.RED),
DEAD(false, Color.WHITE);
public final boolean isAlive;
public final Color color;
CellState(boolean isAlive, Color color) {
this.isAlive = isAlive;
this.color = color;
}
}
package model;
import java.util.Random;
/**
* Represents a cellular automaton, which defines the main parameters of a cellular automaton.
* The rules for updating states are defined in the class used as {@code S}.
*
* @param <S> The type of state used in the cellular automaton.
*/
public interface CellularAutomaton<S extends State<S>> {
/**
* Returns the number of columns in the grid of the cellular automaton.
*
* @return The number of columns in the grid.
*/
int numberOfColumns();
/**
* Returns the number of rows in the grid of the cellular automaton.
*
* @return The number of rows in the grid.
*/
int numberOfRows();
/**
* Returns the default state that is used to initialize cells in the automaton.
*
* @return The default state for cells in the automaton.
*/
S defaultState();
/**
* Generates a random state using the specified random number generator.
*
* @param generator The random number generator to use.
* @return A randomly generated state.
*/
S randomState(Random generator);
}
\ No newline at end of file
package model;
import controller.Simulation;
import matrix.Coordinate;
import matrix.ListMatrix;
import javafx.scene.paint.Color;
import java.util.Iterator;
import java.util.Random;
/**
* {@link CellularAutomatonSimulation} instances run <i>The Game of Life</i>.
*
* @param <S> The type of state used in the simulation.
*/
public class CellularAutomatonSimulation<S extends State<S>>
implements Simulation {
private final ListMatrix<Cell<S>> grid;
private final Cell<Integer> generationNumber = new Cell<>(0);
private final CellularAutomaton<S> automaton;
private final Random generator;
/**
* Creates a new {@link CellularAutomatonSimulation} instance for a given automaton.
*
* @param automaton A description of the {@link CellularAutomaton}.
* @param generator The {@link Random} instance used for random state generation.
*/
public CellularAutomatonSimulation(CellularAutomaton<S> automaton, Random generator) {
this.automaton = automaton;
this.grid = new ListMatrix<>(
automaton.numberOfColumns(),
automaton.numberOfRows(),
new ConstantCellInitializer<>(automaton.defaultState())
);
this.generator = generator;
}
@Override
public int numberOfColumns() {
//TODO: à compléter
return 0;
}
@Override
public int numberOfRows() {
//TODO: à compléter
return 0;
}
/**
* Returns the {@link Cell} at the specified coordinate.
*
* @param coordinate The coordinate of the cell to retrieve.
* @return The cell at the specified coordinate.
*/
public Cell<S> at(Coordinate coordinate) {
//TODO: à compléter
return null;
}
@Override
public void updateToNextGeneration() {
//TODO: à compléter, en utilisant nextGenerationMatrix()
}
/** Computes the {@link ListMatrix} of states obtained after a single step of updates
* of the simulation.
*
* @return the states of each cell after one generation
*/
private ListMatrix<S> nextGenerationMatrix() {
//TODO: à compléter
return null;
}
@Override
public void next(Coordinate coordinate) {
//TODO: à compléter
}
@Override
public void copy(Coordinate source, Coordinate destination) {
//TODO: à compléter
}
@Override
public Color getColor(Coordinate coordinate) {
//TODO: à compléter
return null;
}
@Override
public void setChangeListener(Coordinate coordinate, Runnable listener) {
this.at(coordinate).addOnChangeListener(
(oldValue, newValue) -> listener.run()
);
}
@Override
public void setGenerationNumberChangeListener(OnChangeListener<Integer> listener){
this.generationNumber.addOnChangeListener(listener);
}
@Override
public void clear() {
//TODO: à compléter (penser à remettre le nombre de génération à 0)
}
@Override
public void reset() {
//TODO: à compléter (penser à remettre le nombre de génération à 0)
}
@Override
public Iterator<Coordinate> iterator() {
return this.grid.coordinates().iterator();
}
}
package model;
import matrix.Coordinate;
import matrix.ListMatrix;
import matrix.MatrixInitializer;
/**
* An initializer for {@link ListMatrix} of {@link Cell}s, where each cell is initialized to the
* same value.
*
* @param <T> the type of content of each cell
*/
public class ConstantCellInitializer<T> implements MatrixInitializer<Cell<T>> {
//TODO: ajouter la/les propriétes nécessaires
/** Make a new {@link MatrixInitializer} with cells containing a {@link Cell} with the same
* value.
*
* @param defaultValue the value stored in each cell.
*/
public ConstantCellInitializer(T defaultValue) {
//TODO: à compléter
}
@Override
public Cell<T> initialValueAt(Coordinate coordinate) {
//TODO: à compléter
return null;
}
}
package model;
import javafx.animation.Animation;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.beans.property.ReadOnlyLongProperty;
import javafx.beans.property.ReadOnlyLongWrapper;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.util.Duration;
import java.util.Random;
import static java.util.Objects.requireNonNull;
/**
* {@link GameOfLife} instances run <i>The Game of Life</i>.
*/
public class GameOfLife {
private final Random random = new Random();
private static final int PERIOD_IN_MILLISECONDS = 100;
private final Grid grid;
private final ReadOnlyLongWrapper generationNumber = new ReadOnlyLongWrapper();
private Timeline timeline;
/**
* Creates a new {@code GameOfLife} instance given the underlying {@link Grid}.
*
* @param grid the underlying {@link Grid}
* @throws NullPointerException if {@code grid} is {@code null}
*/
public GameOfLife(Grid grid) {
this.grid = requireNonNull(grid, "grid is null");
updateTimeline();
grid.randomGeneration(random);
}
private void updateTimeline() {
Duration duration = new Duration(PERIOD_IN_MILLISECONDS);
EventHandler<ActionEvent> eventHandler = event -> next();
KeyFrame keyFrame = new KeyFrame(duration, eventHandler);
timeline = new Timeline(keyFrame);
timeline.setCycleCount(Animation.INDEFINITE);
}
/**
* Transitions into the next generationNumber.
*/
private void next() {
grid.updateToNextGeneration();
generationNumber.set(getGenerationNumber() + 1);
}
/**
* Returns the current generationNumber.
*
* @return the current generationNumber
*/
private long getGenerationNumber() {
return generationNumber.get();
}
/**
* Returns the generationNumber {@link ReadOnlyLongProperty}.
*
* @return the generationNumber {@link ReadOnlyLongProperty}
*/
public ReadOnlyLongProperty generationNumberProperty() {
return generationNumber.getReadOnlyProperty();
}
/**
* Returns the {@link Grid}.
*
* @return the {@link Grid}
*/
public Grid getGrid() {
return grid;
}
/**
* Plays the game.
*/
public void play() {
timeline.play();
}
/**
* Pauses the game.
*/
public void pause() {
timeline.pause();
}
/**
* Clears the current game.
*/
public void clear() {
pause();
grid.clear();
generationNumber.set(0);
}
/**
* Clears the current game and randomly generates a new one.
*/
public void reset() {
clear();
grid.randomGeneration(random);
}
}
package model;
import java.util.Iterator;
import java.util.List;
import java.util.Random;
/**
* {@link Grid} instances represent the grid in <i>The Game of Life</i>.
*/
public class Grid implements Iterable<Cell> {
private final int numberOfRows;
private final int numberOfColumns;
private final Cell[][] cells;
/**
* Creates a new {@code Grid} instance given the number of rows and columns.
*
* @param numberOfRows the number of rows
* @param numberOfColumns the number of columns
* @throws IllegalArgumentException if {@code numberOfRows} or {@code numberOfColumns} are
* less than or equal to 0
*/
public Grid(int numberOfRows, int numberOfColumns) {
this.numberOfRows = numberOfRows;
this.numberOfColumns = numberOfColumns;
this.cells = createCells();
}
/**
* Returns an iterator over the cells in this {@code Grid}.
*
* @return an iterator over the cells in this {@code Grid}
*/
@Override
public Iterator<Cell> iterator() {
return new GridIterator(this);
}
private Cell[][] createCells() {
Cell[][] cells = new Cell[getNumberOfRows()][getNumberOfColumns()];
for (int rowIndex = 0; rowIndex < getNumberOfRows(); rowIndex++) {
for (int columnIndex = 0; columnIndex < getNumberOfColumns(); columnIndex++) {
cells[rowIndex][columnIndex] = new Cell();
}
}
return cells;
}
/**
* Returns the {@link Cell} at the given index.
*
* <p>Note that the index is wrapped around so that a {@link Cell} is always returned.
*
* @param rowIndex the row index of the {@link Cell}
* @param columnIndex the column index of the {@link Cell}
* @return the {@link Cell} at the given row and column index
*/
public Cell getCell(int rowIndex, int columnIndex) {
return cells[getWrappedRowIndex(rowIndex)][getWrappedColumnIndex(columnIndex)];
}
private int getWrappedRowIndex(int rowIndex) {
return (rowIndex + getNumberOfRows()) % getNumberOfRows();
}
private int getWrappedColumnIndex(int columnIndex) {
return (columnIndex + getNumberOfColumns()) % getNumberOfColumns();
}
/**
* Returns the number of rows in this {@code Grid}.
*
* @return the number of rows in this {@code Grid}
*/
public int getNumberOfRows() {
return numberOfRows;
}
/**
* Returns the number of columns in this {@code Grid}.
*
* @return the number of columns in this {@code Grid}
*/
public int getNumberOfColumns() {
return numberOfColumns;
}
// TODO: Écrire une version correcte de cette méthode.
public List<Cell> getNeighbors(int rowIndex, int columnIndex) {
return null;
}
// TODO: Écrire une version correcte de cette méthode.
public int countAliveNeighbors(int rowIndex, int columnIndex) {
return 0;
}
// TODO: Écrire une version correcte de cette méthode.
public CellState calculateNextState(int rowIndex, int columnIndex) {
return null;
}
// TODO: Écrire une version correcte de cette méthode.
public CellState[][] calculateNextStates() {
CellState[][] nextCellState = new CellState[getNumberOfRows()][getNumberOfColumns()];
return nextCellState;
}
// TODO: Écrire une version correcte de cette méthode.
public void updateStates(CellState[][] nextState) {
}
/**
* Transitions all {@link Cell}s in this {@code Grid} to the next generation.
*
* <p>The following rules are applied:
* <ul>
* <li>Any live {@link Cell} with fewer than two live neighbours dies, i.e. underpopulation.</li>
* <li>Any live {@link Cell} with two or three live neighbours lives on to the next
* generation.</li>
* <li>Any live {@link Cell} with more than three live neighbours dies, i.e. overpopulation.</li>
* <li>Any dead {@link Cell} with exactly three live neighbours becomes a live cell, i.e.
* reproduction.</li>
* </ul>
*/
// TODO: Écrire une version correcte de cette méthode.
public void updateToNextGeneration() {
}
/**
* Sets all {@link Cell}s in this {@code Grid} as dead.
*/
// TODO: Écrire une version correcte de cette méthode.
public void clear() {
}
/**
* Goes through each {@link Cell} in this {@code Grid} and randomly sets its state as ALIVE or DEAD.
*
* @param random {@link Random} instance used to decide if each {@link Cell} is ALIVE or DEAD.
* @throws NullPointerException if {@code random} is {@code null}.
*/
// TODO: Écrire une version correcte de cette méthode.
public void randomGeneration(Random random) {
}
}